Cargando…

Monodisperse Sub-100 nm Au Nanoshells for Low-Fluence Deep-Tissue Photoacoustic Imaging

[Image: see text] Nanoparticles with high absorption cross sections will advance therapeutic and bioimaging nanomedicine technologies. While Au nanoshells have shown great promise in nanomedicine, state-of-the-art synthesis methods result in scattering-dominant particles, mitigating their efficacy i...

Descripción completa

Detalles Bibliográficos
Autores principales: Manuel, Luis D. B., Vincely, Vinoin Devpaul, Bayer, Carolyn L., McPeak, Kevin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450810/
https://www.ncbi.nlm.nih.gov/pubmed/37540682
http://dx.doi.org/10.1021/acs.nanolett.3c01696
Descripción
Sumario:[Image: see text] Nanoparticles with high absorption cross sections will advance therapeutic and bioimaging nanomedicine technologies. While Au nanoshells have shown great promise in nanomedicine, state-of-the-art synthesis methods result in scattering-dominant particles, mitigating their efficacy in absorption-based techniques that leverage the photothermal effect, such as photoacoustic (PA) imaging. We introduce a highly reproducible synthesis route to monodisperse sub-100 nm Au nanoshells with an absorption-dominant optical response. Au nanoshells with 48 nm SiO(2) cores and 7 nm Au shells show a 14-fold increase in their volumetric absorption coefficient compared to commercial Au nanoshells with dimensions commonly used in nanomedicine. PA imaging with Au nanoshell contrast agents showed a 50% improvement in imaging depth for sub-100 nm Au nanoshells compared with the smallest commercially available nanoshells in a turbid phantom. Furthermore, the high PA signal at low fluences, enabled by sub-100 nm nanoshells, will aid the deployment of low-cost, low-fluence light-emitting diodes for PA imaging.