Cargando…
BDMediLeaves: A leaf images dataset for Bangladeshi medicinal plants identification
This paper introduces a newly curated dataset named “BDMediLeaves” that includes a diverse collection of leaf images of ten distinct medicinal plants from various regions in Dhaka, Bangladesh. The ten distinct categories are Phyllanthus emblica, Terminalia arjuna, Kalanchoe pinnata, Centella asiatic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450835/ https://www.ncbi.nlm.nih.gov/pubmed/37636130 http://dx.doi.org/10.1016/j.dib.2023.109488 |
_version_ | 1785095286261022720 |
---|---|
author | Islam, Saiful Ahmed, Md. Rayhan Islam, Siful Rishad, Md Mahfuzul Alam Ahmed, Sayem Utshow, Toyabur Rahman Siam, Minhajul Islam |
author_facet | Islam, Saiful Ahmed, Md. Rayhan Islam, Siful Rishad, Md Mahfuzul Alam Ahmed, Sayem Utshow, Toyabur Rahman Siam, Minhajul Islam |
author_sort | Islam, Saiful |
collection | PubMed |
description | This paper introduces a newly curated dataset named “BDMediLeaves” that includes a diverse collection of leaf images of ten distinct medicinal plants from various regions in Dhaka, Bangladesh. The ten distinct categories are Phyllanthus emblica, Terminalia arjuna, Kalanchoe pinnata, Centella asiatica, Justicia adhatoda, Mikania micrantha, Azadirachta indica, Hibiscus rosa-sinensis, Ocimum tenuiflorum, and Calotropis gigantea. The dataset contains a total of 2,029 original leaf images, along with an additional 38,606 augmented images. Each original image was meticulously captured under natural lighting conditions with an appropriate background. Experts provided accurate labeling for each image, ensuring its seamless integration into various machine learning (ML) and deep learning (DL) models. This comprehensive dataset holds immense potential for researchers in utilizing various ML and DL methods to make significant advancements in the healthcare and pharmaceutical sectors. It serves as a valuable resource for future investigations, laying the foundation for crucial developments in these domains. |
format | Online Article Text |
id | pubmed-10450835 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104508352023-08-26 BDMediLeaves: A leaf images dataset for Bangladeshi medicinal plants identification Islam, Saiful Ahmed, Md. Rayhan Islam, Siful Rishad, Md Mahfuzul Alam Ahmed, Sayem Utshow, Toyabur Rahman Siam, Minhajul Islam Data Brief Data Article This paper introduces a newly curated dataset named “BDMediLeaves” that includes a diverse collection of leaf images of ten distinct medicinal plants from various regions in Dhaka, Bangladesh. The ten distinct categories are Phyllanthus emblica, Terminalia arjuna, Kalanchoe pinnata, Centella asiatica, Justicia adhatoda, Mikania micrantha, Azadirachta indica, Hibiscus rosa-sinensis, Ocimum tenuiflorum, and Calotropis gigantea. The dataset contains a total of 2,029 original leaf images, along with an additional 38,606 augmented images. Each original image was meticulously captured under natural lighting conditions with an appropriate background. Experts provided accurate labeling for each image, ensuring its seamless integration into various machine learning (ML) and deep learning (DL) models. This comprehensive dataset holds immense potential for researchers in utilizing various ML and DL methods to make significant advancements in the healthcare and pharmaceutical sectors. It serves as a valuable resource for future investigations, laying the foundation for crucial developments in these domains. Elsevier 2023-08-11 /pmc/articles/PMC10450835/ /pubmed/37636130 http://dx.doi.org/10.1016/j.dib.2023.109488 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Data Article Islam, Saiful Ahmed, Md. Rayhan Islam, Siful Rishad, Md Mahfuzul Alam Ahmed, Sayem Utshow, Toyabur Rahman Siam, Minhajul Islam BDMediLeaves: A leaf images dataset for Bangladeshi medicinal plants identification |
title | BDMediLeaves: A leaf images dataset for Bangladeshi medicinal plants identification |
title_full | BDMediLeaves: A leaf images dataset for Bangladeshi medicinal plants identification |
title_fullStr | BDMediLeaves: A leaf images dataset for Bangladeshi medicinal plants identification |
title_full_unstemmed | BDMediLeaves: A leaf images dataset for Bangladeshi medicinal plants identification |
title_short | BDMediLeaves: A leaf images dataset for Bangladeshi medicinal plants identification |
title_sort | bdmedileaves: a leaf images dataset for bangladeshi medicinal plants identification |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450835/ https://www.ncbi.nlm.nih.gov/pubmed/37636130 http://dx.doi.org/10.1016/j.dib.2023.109488 |
work_keys_str_mv | AT islamsaiful bdmedileavesaleafimagesdatasetforbangladeshimedicinalplantsidentification AT ahmedmdrayhan bdmedileavesaleafimagesdatasetforbangladeshimedicinalplantsidentification AT islamsiful bdmedileavesaleafimagesdatasetforbangladeshimedicinalplantsidentification AT rishadmdmahfuzulalam bdmedileavesaleafimagesdatasetforbangladeshimedicinalplantsidentification AT ahmedsayem bdmedileavesaleafimagesdatasetforbangladeshimedicinalplantsidentification AT utshowtoyaburrahman bdmedileavesaleafimagesdatasetforbangladeshimedicinalplantsidentification AT siamminhajulislam bdmedileavesaleafimagesdatasetforbangladeshimedicinalplantsidentification |