Cargando…
A novel online multi-task learning for COVID-19 multi-output spatio-temporal prediction
In light of the ongoing COVID-19 pandemic, predicting its trend would significantly impact decision-making. However, this is not a straightforward task due to three main difficulties: temporal autocorrelation, spatial dependency, and concept drift caused by virus mutations and lockdown policies. Alt...
Autores principales: | Wu, Zipeng, Loo, Chu Kiong, Obaidellah, Unaizah, Pasupa, Kitsuchart |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450863/ https://www.ncbi.nlm.nih.gov/pubmed/37636411 http://dx.doi.org/10.1016/j.heliyon.2023.e18771 |
Ejemplares similares
-
Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach
por: Pasupa, Kitsuchart, et al.
Publicado: (2018) -
SELM: Siamese extreme learning machine with application to face biometrics
por: Kudisthalert, Wasu, et al.
Publicado: (2022) -
Discovery of significant porcine SNPs for swine breed identification by a hybrid of information gain, genetic algorithm, and frequency feature selection technique
por: Pasupa, Kitsuchart, et al.
Publicado: (2020) -
Identifying SME customers from click feedback on mobile banking apps: Supervised and semi-supervised approaches
por: Tungjitnob, Suchat, et al.
Publicado: (2021) -
Multi-scale spatio-temporal analysis of human mobility
por: Alessandretti, Laura, et al.
Publicado: (2017)