Cargando…

Mechanical behavior and dynamic damage constitutive model of glass fiber-reinforced Vinyl Ester with different fiber contents

Glass fiber-reinforced plastics (GFRP) based on polymer materials are widely used in lightweight impac-resistant structure design. In the process of design and development, it is very important to clarify the mechanical behavior under dynamic load to improve the product performance. Therefore, in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Duan, Feiya, Zhang, Runmei, Lei, Jingfa, Liu, Tao, Xuan, Yan, Wei, Zhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450902/
https://www.ncbi.nlm.nih.gov/pubmed/33073721
http://dx.doi.org/10.1177/0036850420961610
Descripción
Sumario:Glass fiber-reinforced plastics (GFRP) based on polymer materials are widely used in lightweight impac-resistant structure design. In the process of design and development, it is very important to clarify the mechanical behavior under dynamic load to improve the product performance. Therefore, in this paper, Quasi-stati and dynamic compression behaviors of unidirectional continuous glass fiber-reinforced vinyl ester (GF/VE) composites with five kinds of fiber contents in the fiber direction were measured by an electro-hydraulic servo experiment system and a split Hopkinson pressure bar, and damage evolution of the material is analyzed by observing the microstructure of the cross section of the material. Results show that: The content of glass fiber affects the wettability between fiber and matrix, and the failure mechanism of material at high strain rate; Under quasi-static conditions, higher glass fiber content yields greater failure strength; Under dynamic conditions, as glass fiber content increases, toughness decreases, and the peak stress first increases and then decreases. Finally, the nonlinear viscoelastic constitutive model with damage evolution is derived, which can be used to predict the impact resistance of new composite structures in the product development and design stage and reduce the development cycle.