Cargando…
SPIDEN: deep Spiking Neural Networks for efficient image denoising
In recent years, Deep Convolutional Neural Networks (DCNNs) have outreached the performance of classical algorithms for image restoration tasks. However, most of these methods are not suited for computational efficiency. In this work, we investigate Spiking Neural Networks (SNNs) for the specific an...
Autores principales: | Castagnetti, Andrea, Pegatoquet, Alain, Miramond, Benoît |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450950/ https://www.ncbi.nlm.nih.gov/pubmed/37638316 http://dx.doi.org/10.3389/fnins.2023.1224457 |
Ejemplares similares
-
Trainable quantization for Speedy Spiking Neural Networks
por: Castagnetti, Andrea, et al.
Publicado: (2023) -
Quantization and Deployment of Deep Neural Networks on Microcontrollers
por: Novac, Pierre-Emmanuel, et al.
Publicado: (2021) -
Unsupervised Anomaly Detection for Cars CAN Sensors Time Series Using Small Recurrent and Convolutional Neural Networks
por: Cherdo, Yann, et al.
Publicado: (2023) -
A Quantized Convolutional Neural Network Implemented With Memristor for Image Denoising and Recognition
por: Zhang, Yuejun, et al.
Publicado: (2021) -
Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks
por: Nallathambi, Abinand, et al.
Publicado: (2021)