Cargando…

A comparative review of the mineralogical and chemical composition of African major bauxite deposits

Bauxite, which is the main raw material that aluminium is extracted from was discovered in Africa in the early 1900s. Currently, the production and export capacities of the African Bauxite ore are about a third of the World's total capacity. However, the processes leading to the final finished...

Descripción completa

Detalles Bibliográficos
Autores principales: Zainudeen, N.M., Mohammed, L., Nyamful, A., Adotey, D., Osae, S.K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450972/
https://www.ncbi.nlm.nih.gov/pubmed/37636439
http://dx.doi.org/10.1016/j.heliyon.2023.e19070
_version_ 1785095322715815936
author Zainudeen, N.M.
Mohammed, L.
Nyamful, A.
Adotey, D.
Osae, S.K.
author_facet Zainudeen, N.M.
Mohammed, L.
Nyamful, A.
Adotey, D.
Osae, S.K.
author_sort Zainudeen, N.M.
collection PubMed
description Bauxite, which is the main raw material that aluminium is extracted from was discovered in Africa in the early 1900s. Currently, the production and export capacities of the African Bauxite ore are about a third of the World's total capacity. However, the processes leading to the final finished product of; surface mining of the ore, refining ore into alumina and finally extracting the pure aluminium metal in high energy consuming smelters that employ the Hall-Héroult electrolysis process; seldom take place inside Africa. The main goal of this work is to analyse the mineralogical and geochemical characteristics of bauxite deposits from some prominent bauxite producing and exporting countries of Africa in order to fashion out if a trend exist for the type of source rocks. Judging from the data obtained, gibbsite is found to be the main aluminium oxide in all the bauxite deposits with slight occurrence of boehmite in 3 out of the 13 deposits, while goethite is the main oxyhydroxide iron mineral. The compiled results of the various investigations highlighted the fact that the deposits are of diverse qualities with respect to world standard of major element content of bauxite; with average percentage concentration in the ranges as: Al(2)O(3) (43.73–61.25), Fe(2)O(3) (1.55–34.25), SiO(2) (0.42–10.84); except two of the deposits with alumina content less than 40%. With evaluated silica moduli less than 8 for only two (2) of the deposits (4.76 and 6.94), the rest have higher moduli that ranges between (14.49 and 75.45). The higher percentage of iron oxide content (>20) in six (6) out of the 13 ore deposits, allowed the deposits to be grouped into three (3) categories of grades; high alumina ore, ferruginous ore, siliceous ore and combination of each. Source rock of the deposits were determined through geochemical and petrographic considerations of laterisation products of the rocks through evaluation of the weathering indices of; Chemical Index of Alteration which was in the range (97.16–99.98) while the Ruxton ratio ranged between (0.0133–0.2100); signifying the parent rock underwent intensive weathering process. This is indicative of the source rocks of the Bauxite deposits being either (i) anorthositic, (ii) argillite and dolerite, (iii) granulite and feldspathic gneiss, and/or, (iv) mafic-basaltic andesite igneous. Awareness of new and yet-to-commence emerging bauxite producing African countries was created, by highlighting the economic impact those respective countries will experience when that mining sector is developed for the aluminum industry at home and world at large.
format Online
Article
Text
id pubmed-10450972
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104509722023-08-26 A comparative review of the mineralogical and chemical composition of African major bauxite deposits Zainudeen, N.M. Mohammed, L. Nyamful, A. Adotey, D. Osae, S.K. Heliyon Review Article Bauxite, which is the main raw material that aluminium is extracted from was discovered in Africa in the early 1900s. Currently, the production and export capacities of the African Bauxite ore are about a third of the World's total capacity. However, the processes leading to the final finished product of; surface mining of the ore, refining ore into alumina and finally extracting the pure aluminium metal in high energy consuming smelters that employ the Hall-Héroult electrolysis process; seldom take place inside Africa. The main goal of this work is to analyse the mineralogical and geochemical characteristics of bauxite deposits from some prominent bauxite producing and exporting countries of Africa in order to fashion out if a trend exist for the type of source rocks. Judging from the data obtained, gibbsite is found to be the main aluminium oxide in all the bauxite deposits with slight occurrence of boehmite in 3 out of the 13 deposits, while goethite is the main oxyhydroxide iron mineral. The compiled results of the various investigations highlighted the fact that the deposits are of diverse qualities with respect to world standard of major element content of bauxite; with average percentage concentration in the ranges as: Al(2)O(3) (43.73–61.25), Fe(2)O(3) (1.55–34.25), SiO(2) (0.42–10.84); except two of the deposits with alumina content less than 40%. With evaluated silica moduli less than 8 for only two (2) of the deposits (4.76 and 6.94), the rest have higher moduli that ranges between (14.49 and 75.45). The higher percentage of iron oxide content (>20) in six (6) out of the 13 ore deposits, allowed the deposits to be grouped into three (3) categories of grades; high alumina ore, ferruginous ore, siliceous ore and combination of each. Source rock of the deposits were determined through geochemical and petrographic considerations of laterisation products of the rocks through evaluation of the weathering indices of; Chemical Index of Alteration which was in the range (97.16–99.98) while the Ruxton ratio ranged between (0.0133–0.2100); signifying the parent rock underwent intensive weathering process. This is indicative of the source rocks of the Bauxite deposits being either (i) anorthositic, (ii) argillite and dolerite, (iii) granulite and feldspathic gneiss, and/or, (iv) mafic-basaltic andesite igneous. Awareness of new and yet-to-commence emerging bauxite producing African countries was created, by highlighting the economic impact those respective countries will experience when that mining sector is developed for the aluminum industry at home and world at large. Elsevier 2023-08-12 /pmc/articles/PMC10450972/ /pubmed/37636439 http://dx.doi.org/10.1016/j.heliyon.2023.e19070 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review Article
Zainudeen, N.M.
Mohammed, L.
Nyamful, A.
Adotey, D.
Osae, S.K.
A comparative review of the mineralogical and chemical composition of African major bauxite deposits
title A comparative review of the mineralogical and chemical composition of African major bauxite deposits
title_full A comparative review of the mineralogical and chemical composition of African major bauxite deposits
title_fullStr A comparative review of the mineralogical and chemical composition of African major bauxite deposits
title_full_unstemmed A comparative review of the mineralogical and chemical composition of African major bauxite deposits
title_short A comparative review of the mineralogical and chemical composition of African major bauxite deposits
title_sort comparative review of the mineralogical and chemical composition of african major bauxite deposits
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450972/
https://www.ncbi.nlm.nih.gov/pubmed/37636439
http://dx.doi.org/10.1016/j.heliyon.2023.e19070
work_keys_str_mv AT zainudeennm acomparativereviewofthemineralogicalandchemicalcompositionofafricanmajorbauxitedeposits
AT mohammedl acomparativereviewofthemineralogicalandchemicalcompositionofafricanmajorbauxitedeposits
AT nyamfula acomparativereviewofthemineralogicalandchemicalcompositionofafricanmajorbauxitedeposits
AT adoteyd acomparativereviewofthemineralogicalandchemicalcompositionofafricanmajorbauxitedeposits
AT osaesk acomparativereviewofthemineralogicalandchemicalcompositionofafricanmajorbauxitedeposits
AT zainudeennm comparativereviewofthemineralogicalandchemicalcompositionofafricanmajorbauxitedeposits
AT mohammedl comparativereviewofthemineralogicalandchemicalcompositionofafricanmajorbauxitedeposits
AT nyamfula comparativereviewofthemineralogicalandchemicalcompositionofafricanmajorbauxitedeposits
AT adoteyd comparativereviewofthemineralogicalandchemicalcompositionofafricanmajorbauxitedeposits
AT osaesk comparativereviewofthemineralogicalandchemicalcompositionofafricanmajorbauxitedeposits