Cargando…

Optimal control for hybrid magnetically suspended flywheel rotor based on state feedback exact linearization model

For a hybrid magnetically suspended flywheel (MSFW) rotor suspended by permanent magnet biased active magnetic bearing (AMB) and passive magnetic bearing (PMB), the dynamic functions are nonlinear and coupling among different degrees of freedom (DOFs). In this article, the nonlinear dynamic function...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Tong, Xiang, Biao, Zhang, Shilei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451063/
https://www.ncbi.nlm.nih.gov/pubmed/32885729
http://dx.doi.org/10.1177/0036850420951389
Descripción
Sumario:For a hybrid magnetically suspended flywheel (MSFW) rotor suspended by permanent magnet biased active magnetic bearing (AMB) and passive magnetic bearing (PMB), the dynamic functions are nonlinear and coupling among different degrees of freedom (DOFs). In this article, the nonlinear dynamic functions in two controllable DOFs of the hybrid MSFW rotor are developed based on the equivalent magnetic circuit, and then the nonlinear dynamic function is linearized by using the state feedback exact linearization (SFEL) in order to minimize the coupling in two controllable DOFs. Furthermore, an optimal control based on the SFEL model is designed to reduce displacement runout and coupling among two controllable DOFs of the hybrid MSFW rotor at the rated speed. Finally, the simulation and experimental results validate the effectiveness of the optimal control based on SFEL model, and the stability of the hybrid MSFW rotor with an impulse-type disturbance is improved.