Cargando…

Genomic analysis of a new heterotic maize group reveals key loci for pedigree breeding

Genome-wide analyses of maize populations have clarified the genetic basis of crop domestication and improvement. However, limited information is available on how breeding improvement reshaped the genome in the process of the formation of heterotic groups. In this study, we identified a new heteroti...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zhiyong, Li, Chunhui, Zhang, Ruyang, Duan, Minxiao, Tian, Hongli, Yi, Hongmei, Xu, Liwen, Wang, Fengge, Shi, Zi, Wang, Xiaqing, Wang, Jidong, Su, Aiguo, Wang, Shuai, Sun, Xuan, Zhao, Yanxin, Wang, Shuaishuai, Zhang, Yunxia, Wang, Yuandong, Song, Wei, Zhao, Jiuran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451083/
https://www.ncbi.nlm.nih.gov/pubmed/37636101
http://dx.doi.org/10.3389/fpls.2023.1213675
Descripción
Sumario:Genome-wide analyses of maize populations have clarified the genetic basis of crop domestication and improvement. However, limited information is available on how breeding improvement reshaped the genome in the process of the formation of heterotic groups. In this study, we identified a new heterotic group (X group) based on an examination of 512 Chinese maize inbred lines. The X group was clearly distinct from the other non-H&L groups, implying that X × HIL is a new heterotic pattern. We selected the core inbred lines for an analysis of yield-related traits. Almost all yield-related traits were better in the X lines than those in the parental lines, indicating that the primary genetic improvement in the X group during breeding was yield-related traits. We generated whole-genome sequences of these lines with an average coverage of 17.35× to explore genome changes further. We analyzed the identity-by-descent (IBD) segments transferred from the two parents to the X lines and identified 29 and 28 IBD conserved regions (ICRs) from the parents PH4CV and PH6WC, respectively, accounting for 28.8% and 12.8% of the genome. We also identified 103, 89, and 131 selective sweeps (SSWs) using methods that involved the π, Tajima’s D, and CLR values, respectively. Notably, 96.13% of the ICRs co-localized with SSWs, indicating that SSW signals concentrated in ICRs. We identified 171 annotated genes associated with yield-related traits in maize both in ICRs and SSWs. To identify the genetic factors associated with yield improvement, we conducted QTL mapping for 240 lines from a DH population (PH4CV × PH6WC, which are the parents of X1132X) for ten key yield-related traits and identified a total of 55 QTLs. Furthermore, we detected three QTL clusters both in ICRs and SSWs. Based on the genetic evidence, we finally identified three key genes contributing to yield improvement in breeding the X group. These findings reveal key loci and genes targeted during pedigree breeding and provide new insights for future genomic breeding.