Cargando…
Deep Learning Models for Automatic Upper Airway Segmentation and Minimum Cross-Sectional Area Localisation in Two-Dimensional Images
Objective: To develop and validate convolutional neural network algorithms for automatic upper airway segmentation and minimum cross-sectional area (CSAmin) localisation in two-dimensional (2D) radiographic airway images. Materials and Methods: Two hundred and one 2D airway images acquired using con...
Autores principales: | Chu, Guang, Zhang, Rongzhao, He, Yingqing, Ng, Chun Hown, Gu, Min, Leung, Yiu Yan, He, Hong, Yang, Yanqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451171/ https://www.ncbi.nlm.nih.gov/pubmed/37627800 http://dx.doi.org/10.3390/bioengineering10080915 |
Ejemplares similares
-
Automatic localisation of landmark points in CMR images using a cyclic motion mask
por: Buján, Jorge Novo, et al.
Publicado: (2012) -
Automatic segmentation of puborectalis muscle on three‐dimensional transperineal ultrasound
por: van den Noort, F., et al.
Publicado: (2018) -
Channelrhodopsin-2 Localised to the Axon Initial Segment
por: Grubb, Matthew S., et al.
Publicado: (2010) -
Determination of the Minimum Detectable Change in the Total and Segmental Volumes of the Upper Limb, Evaluated by Perimeter Measurements
por: Tánori-Tapia, José Manuel, et al.
Publicado: (2020) -
Minimum detectable spinal cord atrophy with automatic segmentation: Investigations using an open-access dataset of healthy participants
por: Bautin, Paul, et al.
Publicado: (2021)