Cargando…
Development of a Machine Learning Model of Postoperative Acute Kidney Injury Using Non-Invasive Time-Sensitive Intraoperative Predictors
Acute kidney injury (AKI) is a major postoperative complication that lacks established intraoperative predictors. Our objective was to develop a prediction model using preoperative and high-frequency intraoperative data for postoperative AKI. In this retrospective cohort study, we evaluated 77,428 o...
Autores principales: | Zamirpour, Siavash, Hubbard, Alan E., Feng, Jean, Butte, Atul J., Pirracchio, Romain, Bishara, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451203/ https://www.ncbi.nlm.nih.gov/pubmed/37627817 http://dx.doi.org/10.3390/bioengineering10080932 |
Ejemplares similares
-
Assessment of Machine Learning to Estimate the Individual Treatment Effect of Corticosteroids in Septic Shock
por: Pirracchio, Romain, et al.
Publicado: (2020) -
Postoperative delirium prediction using machine learning models and preoperative electronic health record data
por: Bishara, Andrew, et al.
Publicado: (2022) -
Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare
por: Feng, Jean, et al.
Publicado: (2022) -
Intraoperative hypotension affects postoperative acute kidney injury depending on the invasiveness of abdominal surgery: A retrospective cohort study
por: Fujii, Tasuku, et al.
Publicado: (2023) -
Pre- and intraoperative predictors of acute kidney injury after liver transplantation
por: Mrzljak, Anna, et al.
Publicado: (2020)