Cargando…
In the Alphaproteobacterium Hyphomicrobium denitrificans SoxR Serves a Sulfane Sulfur-Responsive Repressor of Sulfur Oxidation
In organisms that use reduced sulfur compounds as alternative or additional electron donors to organic compounds, transcriptional regulation of genes for enzymes involved in sulfur oxidation is needed to adjust metabolic flux to environmental conditions. However, little is known about the sensing an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451225/ https://www.ncbi.nlm.nih.gov/pubmed/37627615 http://dx.doi.org/10.3390/antiox12081620 |
Sumario: | In organisms that use reduced sulfur compounds as alternative or additional electron donors to organic compounds, transcriptional regulation of genes for enzymes involved in sulfur oxidation is needed to adjust metabolic flux to environmental conditions. However, little is known about the sensing and response to inorganic sulfur compounds such as thiosulfate in sulfur-oxidizing bacteria. In the Alphaproteobacterium Hyphomicrobium denitrificans, one strategy is the use of the ArsR–SmtB-type transcriptional regulator SoxR. We show that this homodimeric repressor senses sulfane sulfur and that it is crucial for the expression not only of sox genes encoding the components of a truncated periplasmic thiosulfate-oxidizing enzyme system but also of several other sets of genes for enzymes of sulfur oxidation. DNA binding and transcriptional regulatory activity of SoxR are controlled by polysulfide-dependent cysteine modification. The repressor uses the formation of a sulfur bridge between two conserved cysteines as a trigger to bind and release DNA and can also form a vicinal disulfide bond to orchestrate a response to oxidizing conditions. The importance of the sulfur bridge forming cysteines was confirmed by site-directed mutagenesis, mass spectrometry, and gel shift assays. In vivo, SoxR interacts directly or indirectly with a second closely related repressor, sHdrR. |
---|