Cargando…
Enhancing Skin Cancer Detection and Classification in Dermoscopic Images through Concatenated MobileNetV2 and Xception Models
One of the most promising research initiatives in the healthcare field is focused on the rising incidence of skin cancer worldwide and improving early discovery methods for the disease. The most significant factor in the fatalities caused by skin cancer is the late identification of the disease. The...
Autores principales: | Ogundokun, Roseline Oluwaseun, Li, Aiman, Babatunde, Ronke Seyi, Umezuruike, Chinecherem, Sadiku, Peter O., Abdulahi, AbdulRahman Tosho, Babatunde, Akinbowale Nathaniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451641/ https://www.ncbi.nlm.nih.gov/pubmed/37627864 http://dx.doi.org/10.3390/bioengineering10080979 |
Ejemplares similares
-
Application of MobileNetV2 to waste classification
por: Yong, Liying, et al.
Publicado: (2023) -
A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2
por: Rahimzadeh, Mohammad, et al.
Publicado: (2020) -
Deep Learning-Based Classification for Melanoma Detection Using XceptionNet
por: Lu, Xinrong, et al.
Publicado: (2022) -
MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors
por: Ogundokun, Roseline Oluwaseun, et al.
Publicado: (2023) -
Parking Lot Occupancy Detection with Improved MobileNetV3
por: Yuldashev, Yusufbek, et al.
Publicado: (2023)