Cargando…

Enhancing Chemical Stability through Structural Modification of Antimicrobial Peptides with Non-Proteinogenic Amino Acids

Multidrug-resistant bacteria (MDRB) remain a significant threat to humanity, resulting in over 1.2 million deaths per year. To combat this problem effectively, the development of therapeutic agents with diverse mechanisms of action is crucial. Antimicrobial peptides (AMPs) have emerged as promising...

Descripción completa

Detalles Bibliográficos
Autores principales: Ito, Takahito, Matsunaga, Natsumi, Kurashima, Megumi, Demizu, Yosuke, Misawa, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451648/
https://www.ncbi.nlm.nih.gov/pubmed/37627746
http://dx.doi.org/10.3390/antibiotics12081326
_version_ 1785095466479779840
author Ito, Takahito
Matsunaga, Natsumi
Kurashima, Megumi
Demizu, Yosuke
Misawa, Takashi
author_facet Ito, Takahito
Matsunaga, Natsumi
Kurashima, Megumi
Demizu, Yosuke
Misawa, Takashi
author_sort Ito, Takahito
collection PubMed
description Multidrug-resistant bacteria (MDRB) remain a significant threat to humanity, resulting in over 1.2 million deaths per year. To combat this problem effectively, the development of therapeutic agents with diverse mechanisms of action is crucial. Antimicrobial peptides (AMPs) have emerged as promising next-generation therapeutics to combat infectious diseases, particularly MDRB. By targeting microbial membranes and inducing lysis, AMPs can effectively inhibit microbial growth, making them less susceptible to the development of resistance. Numerous structural advancements have been made to optimize the efficacy of AMPs. Previously, we developed 17KKV-Aib, a derivative of the Magainin 2 (Mag2) peptide, by incorporating a,a-disubstituted amino acids (dAAs) to modulate its secondary structure. 17KKV-Aib demonstrated potent antimicrobial activity against Gram-positive and Gram-negative bacteria, including multidrug-resistant Pseudomonas aeruginosa (MDRP), with minimal hemolytic activity against human red blood cells. However, 17KKV-Aib faces challenges regarding its susceptibility to digestive enzymes, hindering its potential as an antimicrobial agent. In this study, we designed and synthesized derivatives of 17KKV-Aib, replacing Lys residues with 4-aminopiperidine-4-carboxylic acid (Api), which is a cyclized dAA residue possessing cationic properties on its side chain. We investigated the impact of Api substitution on the secondary structure, antimicrobial activity, hemolytic activity, and resistance to digestive enzymes. Our findings revealed that introducing Api residues preserved the helical structure and antimicrobial activity and enhanced resistance to digestive enzymes, with a slight increase in hemolytic activity.
format Online
Article
Text
id pubmed-10451648
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104516482023-08-26 Enhancing Chemical Stability through Structural Modification of Antimicrobial Peptides with Non-Proteinogenic Amino Acids Ito, Takahito Matsunaga, Natsumi Kurashima, Megumi Demizu, Yosuke Misawa, Takashi Antibiotics (Basel) Article Multidrug-resistant bacteria (MDRB) remain a significant threat to humanity, resulting in over 1.2 million deaths per year. To combat this problem effectively, the development of therapeutic agents with diverse mechanisms of action is crucial. Antimicrobial peptides (AMPs) have emerged as promising next-generation therapeutics to combat infectious diseases, particularly MDRB. By targeting microbial membranes and inducing lysis, AMPs can effectively inhibit microbial growth, making them less susceptible to the development of resistance. Numerous structural advancements have been made to optimize the efficacy of AMPs. Previously, we developed 17KKV-Aib, a derivative of the Magainin 2 (Mag2) peptide, by incorporating a,a-disubstituted amino acids (dAAs) to modulate its secondary structure. 17KKV-Aib demonstrated potent antimicrobial activity against Gram-positive and Gram-negative bacteria, including multidrug-resistant Pseudomonas aeruginosa (MDRP), with minimal hemolytic activity against human red blood cells. However, 17KKV-Aib faces challenges regarding its susceptibility to digestive enzymes, hindering its potential as an antimicrobial agent. In this study, we designed and synthesized derivatives of 17KKV-Aib, replacing Lys residues with 4-aminopiperidine-4-carboxylic acid (Api), which is a cyclized dAA residue possessing cationic properties on its side chain. We investigated the impact of Api substitution on the secondary structure, antimicrobial activity, hemolytic activity, and resistance to digestive enzymes. Our findings revealed that introducing Api residues preserved the helical structure and antimicrobial activity and enhanced resistance to digestive enzymes, with a slight increase in hemolytic activity. MDPI 2023-08-17 /pmc/articles/PMC10451648/ /pubmed/37627746 http://dx.doi.org/10.3390/antibiotics12081326 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ito, Takahito
Matsunaga, Natsumi
Kurashima, Megumi
Demizu, Yosuke
Misawa, Takashi
Enhancing Chemical Stability through Structural Modification of Antimicrobial Peptides with Non-Proteinogenic Amino Acids
title Enhancing Chemical Stability through Structural Modification of Antimicrobial Peptides with Non-Proteinogenic Amino Acids
title_full Enhancing Chemical Stability through Structural Modification of Antimicrobial Peptides with Non-Proteinogenic Amino Acids
title_fullStr Enhancing Chemical Stability through Structural Modification of Antimicrobial Peptides with Non-Proteinogenic Amino Acids
title_full_unstemmed Enhancing Chemical Stability through Structural Modification of Antimicrobial Peptides with Non-Proteinogenic Amino Acids
title_short Enhancing Chemical Stability through Structural Modification of Antimicrobial Peptides with Non-Proteinogenic Amino Acids
title_sort enhancing chemical stability through structural modification of antimicrobial peptides with non-proteinogenic amino acids
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451648/
https://www.ncbi.nlm.nih.gov/pubmed/37627746
http://dx.doi.org/10.3390/antibiotics12081326
work_keys_str_mv AT itotakahito enhancingchemicalstabilitythroughstructuralmodificationofantimicrobialpeptideswithnonproteinogenicaminoacids
AT matsunaganatsumi enhancingchemicalstabilitythroughstructuralmodificationofantimicrobialpeptideswithnonproteinogenicaminoacids
AT kurashimamegumi enhancingchemicalstabilitythroughstructuralmodificationofantimicrobialpeptideswithnonproteinogenicaminoacids
AT demizuyosuke enhancingchemicalstabilitythroughstructuralmodificationofantimicrobialpeptideswithnonproteinogenicaminoacids
AT misawatakashi enhancingchemicalstabilitythroughstructuralmodificationofantimicrobialpeptideswithnonproteinogenicaminoacids