Cargando…
A Boundary-Enhanced Liver Segmentation Network for Multi-Phase CT Images with Unsupervised Domain Adaptation
Multi-phase computed tomography (CT) images have gained significant popularity in the diagnosis of hepatic disease. There are several challenges in the liver segmentation of multi-phase CT images. (1) Annotation: due to the distinct contrast enhancements observed in different phases (i.e., each phas...
Autores principales: | Ananda, Swathi, Jain, Rahul Kumar, Li, Yinhao, Iwamoto, Yutaro, Han, Xian-Hua, Kanasaki, Shuzo, Hu, Hongjie, Chen, Yen-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451706/ https://www.ncbi.nlm.nih.gov/pubmed/37627784 http://dx.doi.org/10.3390/bioengineering10080899 |
Ejemplares similares
-
Unsupervised domain adaptation based COVID-19 CT infection segmentation network
por: Chen, Han, et al.
Publicado: (2021) -
Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models
por: Gómez, Jose L., et al.
Publicado: (2023) -
Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation
por: Liu, Xiaofeng, et al.
Publicado: (2022) -
Unsupervised Domain Adaptation With Optimal Transport in Multi-Site Segmentation of Multiple Sclerosis Lesions From MRI Data
por: Ackaouy, Antoine, et al.
Publicado: (2020) -
Unsupervised multi-source domain adaptation with no observable source data
por: Jeon, Hyunsik, et al.
Publicado: (2021)