Cargando…
An Approach to Binary Classification of Alzheimer’s Disease Using LSTM
In this study, we use LSTM (Long-Short-Term-Memory) networks to evaluate Magnetic Resonance Imaging (MRI) data to overcome the shortcomings of conventional Alzheimer’s disease (AD) detection techniques. Our method offers greater reliability and accuracy in predicting the possibility of AD, in contra...
Autores principales: | Salehi, Waleed, Baglat, Preety, Gupta, Gaurav, Khan, Surbhi Bhatia, Almusharraf, Ahlam, Alqahtani, Ali, Kumar, Adarsh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451729/ https://www.ncbi.nlm.nih.gov/pubmed/37627835 http://dx.doi.org/10.3390/bioengineering10080950 |
Ejemplares similares
-
Review on machine and deep learning models for the detection and prediction of Coronavirus
por: Waleed Salehi, Ahmad, et al.
Publicado: (2020) -
IoT-Based Wearable Devices for Patients Suffering from Alzheimer Disease
por: Salehi, Waleed, et al.
Publicado: (2022) -
Load Balancing Using Artificial Intelligence for Cloud-Enabled Internet of Everything in Healthcare Domain
por: Aqeel, Ibrahim, et al.
Publicado: (2023) -
Optimizing Inference Distribution for Efficient Kidney Tumor Segmentation Using a UNet-PWP Deep-Learning Model with XAI on CT Scan Images
por: Rao, P. Kiran, et al.
Publicado: (2023) -
Cancer Diagnosis through Contour Visualization of Gene Expression Leveraging Deep Learning Techniques
por: Venkatesan, Vinoth Kumar, et al.
Publicado: (2023)