Cargando…
Co-ERA-Net: Co-Supervision and Enhanced Region Attention for Accurate Segmentation in COVID-19 Chest Infection Images
Accurate segmentation of infected lesions in chest images remains a challenging task due to the lack of utilization of lung region information, which could serve as a strong location hint for infection. In this paper, we propose a novel segmentation network Co-ERA-Net for infections in chest images...
Autores principales: | He, Zebang, Wong, Alex Ngai Nick, Yoo, Jung Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451793/ https://www.ncbi.nlm.nih.gov/pubmed/37627813 http://dx.doi.org/10.3390/bioengineering10080928 |
Ejemplares similares
-
ADU-Net: An Attention Dense U-Net based deep supervised DNN for automated lesion segmentation of COVID-19 from chest CT images
por: Saha, Sanjib, et al.
Publicado: (2023) -
CAFS: An Attention-Based Co-Segmentation Semi-Supervised Method for Nasopharyngeal Carcinoma Segmentation
por: Chen, Yitong, et al.
Publicado: (2022) -
Chest L-Transformer: Local Features With Position Attention for Weakly Supervised Chest Radiograph Segmentation and Classification
por: Gu, Hong, et al.
Publicado: (2022) -
Multi-Task Deep Supervision on Attention R2U-Net for Brain Tumor Segmentation
por: Ma, Shiqiang, et al.
Publicado: (2021) -
MSAL-Net: improve accurate segmentation of nuclei in histopathology images by multiscale attention learning network
por: Ali, Haider, et al.
Publicado: (2022)