Cargando…
SeizFt: Interpretable Machine Learning for Seizure Detection Using Wearables
This work presents SeizFt—a novel seizure detection framework that utilizes machine learning to automatically detect seizures using wearable SensorDot EEG data. Inspired by interpretable sleep staging, our novel approach employs a unique combination of data augmentation, meaningful feature extractio...
Autores principales: | Al-Hussaini, Irfan, Mitchell, Cassie S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451805/ https://www.ncbi.nlm.nih.gov/pubmed/37627803 http://dx.doi.org/10.3390/bioengineering10080918 |
Ejemplares similares
-
Pregnancy Effects on Seizure Frequency: To Seize or Not to
Seize
por: Becker, Danielle A.
Publicado: (2021) -
Seizure detection using wearable sensors and machine learning: Setting a benchmark
por: Tang, Jianbin, et al.
Publicado: (2021) -
Optimizing Electrode Configurations for Wearable EEG Seizure Detection Using Machine Learning
por: Gelbard-Sagiv, Hagar, et al.
Publicado: (2023) -
Dataset of seized wildlife and their intended uses
por: Stringham, Oliver C., et al.
Publicado: (2021) -
Seizing an opportunity
por: Zurn, Perry, et al.
Publicado: (2019)