Cargando…
Hybrid Machine Learning Framework for Multistage Parkinson’s Disease Classification Using Acoustic Features of Sustained Korean Vowels
Recent research has achieved a great classification rate for separating healthy people from those with Parkinson’s disease (PD) using speech and the voice. However, these studies have primarily treated early and advanced stages of PD as equal entities, neglecting the distinctive speech impairments a...
Autores principales: | Mondol, S. I. M. M. Raton, Kim, Ryul, Lee, Sangmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451837/ https://www.ncbi.nlm.nih.gov/pubmed/37627869 http://dx.doi.org/10.3390/bioengineering10080984 |
Ejemplares similares
-
The voice of COVID-19: Acoustic correlates of infection in sustained vowels
por: Bartl-Pokorny, Katrin D., et al.
Publicado: (2021) -
Machine Learning-Based Hearing Aid Fitting Personalization Using Clinical Fitting Data
por: Mondol, S. I. M. M. Raton, et al.
Publicado: (2022) -
Improved Estimation of Parkinsonian Vowel Quality through Acoustic Feature Assimilation
por: Gaballah, Amr, et al.
Publicado: (2021) -
Spanish is better than English for discriminating Portuguese vowels: acoustic similarity versus vowel inventory size
por: Elvin, Jaydene, et al.
Publicado: (2014) -
Comparison of the prediction accuracy of machine learning algorithms in crosslinguistic vowel classification
por: Georgiou, Georgios P.
Publicado: (2023)