Cargando…
Deep Learning-Based Automated Magnetic Resonance Image Segmentation of the Lumbar Structure and Its Adjacent Structures at the L4/5 Level
(1) Background: This study aims to develop a deep learning model based on a 3D Deeplab V3+ network to automatically segment multiple structures from magnetic resonance (MR) images at the L4/5 level. (2) Methods: After data preprocessing, the modified 3D Deeplab V3+ network of the deep learning model...
Autores principales: | Wang, Min, Su, Zhihai, Liu, Zheng, Chen, Tao, Cui, Zhifei, Li, Shaolin, Pang, Shumao, Lu, Hai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451852/ https://www.ncbi.nlm.nih.gov/pubmed/37627848 http://dx.doi.org/10.3390/bioengineering10080963 |
Ejemplares similares
-
Automated Magnetic Resonance Image Segmentation of Spinal Structures at the L4‐5 Level with Deep Learning: 3D Reconstruction of Lumbar Intervertebral Foramen
por: Chen, Tao, et al.
Publicado: (2022) -
Deep learning‐based detection and classification of lumbar disc herniation on magnetic resonance images
por: Zhang, Weicong, et al.
Publicado: (2023) -
Adjacent Segment Pathology after Lumbar Spinal Fusion
por: Lee, Jae Chul, et al.
Publicado: (2015) -
Deep learning-based automated lesion segmentation on mouse stroke magnetic resonance images
por: An, Jeehye, et al.
Publicado: (2023) -
Adjacent Segment Degeneration after Short-Segment Lateral Lumbar Interbody Fusion (LLIF)
por: Ouchida, Jun, et al.
Publicado: (2022)