Cargando…
Clinical Interpretability of Deep Learning for Predicting Microvascular Invasion in Hepatocellular Carcinoma by Using Attention Mechanism
Preoperative prediction of microvascular invasion (MVI) is essential for management decision in hepatocellular carcinoma (HCC). Deep learning-based prediction models of MVI are numerous but lack clinical interpretation due to their “black-box” nature. Consequently, we aimed to use an attention-guide...
Autores principales: | You, Huayu, Wang, Jifei, Ma, Ruixia, Chen, Yuying, Li, Lujie, Song, Chenyu, Dong, Zhi, Feng, Shiting, Zhou, Xiaoqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451856/ https://www.ncbi.nlm.nih.gov/pubmed/37627833 http://dx.doi.org/10.3390/bioengineering10080948 |
Ejemplares similares
-
Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning
por: Jiang, Yi-Quan, et al.
Publicado: (2020) -
Preoperative assessment of peripheral vascular invasion of pancreatic ductal adenocarcinoma based on high-resolution MRI
por: Zhou, Xiaoqi, et al.
Publicado: (2023) -
Predicting microvascular invasion in hepatocellular carcinoma: a deep learning model validated across hospitals
por: Liu, Shu-Cheng, et al.
Publicado: (2021) -
Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma
por: Sun, Bao-Ye, et al.
Publicado: (2022) -
Deep learning for evaluation of microvascular invasion in hepatocellular carcinoma from tumor areas of histology images
por: Chen, Qiaofeng, et al.
Publicado: (2022)