Cargando…
A Comparative Study of Automated Machine Learning Platforms for Exercise Anthropometry-Based Typology Analysis: Performance Evaluation of AWS SageMaker, GCP VertexAI, and MS Azure
The increasing prevalence of machine learning (ML) and automated machine learning (AutoML) applications across diverse industries necessitates rigorous comparative evaluations of their predictive accuracies under various computational environments. The purpose of this research was to compare and ana...
Autores principales: | Choi, Wansuk, Choi, Taeseok, Heo, Seoyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451891/ https://www.ncbi.nlm.nih.gov/pubmed/37627775 http://dx.doi.org/10.3390/bioengineering10080891 |
Ejemplares similares
-
Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure
por: Alla, Sridhar, et al.
Publicado: (2020) -
Learn Amazon SageMaker
por: Simon, Julien
Publicado: (2020) -
Machine learning in the AWS cloud: add intelligence to applications with Amazon SageMaker and Amazon Rekognition
por: Mishra, Abhishek
Publicado: (2019) -
Mastering machine learning on AWS: advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow
por: Mengle, Saket S R, et al.
Publicado: (2019) -
JavaScript cloud native development cookbook: deliver serverless cloud-native solutions on AWS, Azure, and GCP
por: Gilbert, John
Publicado: (2018)