Cargando…
Self-Supervision for Medical Image Classification: State-of-the-Art Performance with ~100 Labeled Training Samples per Class
Is self-supervised deep learning (DL) for medical image analysis already a serious alternative to the de facto standard of end-to-end trained supervised DL? We tackle this question for medical image classification, with a particular focus on one of the currently most limiting factor of the field: th...
Autores principales: | Nielsen, Maximilian, Wenderoth, Laura, Sentker, Thilo, Werner, René |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451977/ https://www.ncbi.nlm.nih.gov/pubmed/37627780 http://dx.doi.org/10.3390/bioengineering10080895 |
Ejemplares similares
-
Semi-Supervised Classification of PolSAR Images Based on Co-Training of CNN and SVM with Limited Labeled Samples
por: Zhao, Mingjun, et al.
Publicado: (2023) -
Comparing Three Methods of Selecting Training Samples in Supervised Classification of Multispectral Remote Sensing Images
por: Zhang, Hongying, et al.
Publicado: (2023) -
Semi-supervised multi-label collective classification ensemble for functional genomics
por: Wu, Qingyao, et al.
Publicado: (2014) -
Self-Supervised Learning Methods for Label-Efficient Dental Caries Classification
por: Taleb, Aiham, et al.
Publicado: (2022) -
Self-Supervised Node Classification with Strategy and Actively Selected Labeled Set
por: Kang, Yi, et al.
Publicado: (2022)