Cargando…

Clinical Stability of Bespoke Snowman Plates for Fixation following Sagittal Split Ramus Osteotomy of the Mandible

Maxillofacial skeletal surgery often involves the use of patient-specific implants. However, errors in obtaining patient data and designing and manufacturing patient-specific plates and guides can occur even with accurate virtual surgery. To address these errors, bespoke Snowman plates were designed...

Descripción completa

Detalles Bibliográficos
Autores principales: Byun, Soo-Hwan, Park, Sang-Yoon, Yi, Sang-Min, Park, In-Young, On, Sung-Woon, Jeong, Chun-Ki, Kim, Jong-Cheol, Yang, Byoung-Eun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452001/
https://www.ncbi.nlm.nih.gov/pubmed/37627799
http://dx.doi.org/10.3390/bioengineering10080914
_version_ 1785095559160266752
author Byun, Soo-Hwan
Park, Sang-Yoon
Yi, Sang-Min
Park, In-Young
On, Sung-Woon
Jeong, Chun-Ki
Kim, Jong-Cheol
Yang, Byoung-Eun
author_facet Byun, Soo-Hwan
Park, Sang-Yoon
Yi, Sang-Min
Park, In-Young
On, Sung-Woon
Jeong, Chun-Ki
Kim, Jong-Cheol
Yang, Byoung-Eun
author_sort Byun, Soo-Hwan
collection PubMed
description Maxillofacial skeletal surgery often involves the use of patient-specific implants. However, errors in obtaining patient data and designing and manufacturing patient-specific plates and guides can occur even with accurate virtual surgery. To address these errors, bespoke Snowman plates were designed to allow movement of the mandible. This study aimed to compare the stability of bespoke four-hole miniplates with that of a bespoke Snowman plate for bilateral sagittal split ramus osteotomy (SSRO), and to present a method to investigate joint cavity changes, as well as superimpose virtual and actual surgical images of the mandible. This retrospective study included 22 patients who met the inclusion criteria and underwent orthognathic surgery at a university hospital between 2015 and 2018. Two groups were formed on the basis of the plates used: a control group with four-hole bespoke plates and a study group with bespoke Snowman plates. Stability was assessed by measuring the condyle–fossa space and superimposing three-dimensional virtual surgery images on postoperative cone-beam computed tomography (CBCT) scans. No significant differences were observed in the condyle–fossa space preoperatively and 1 year postoperatively between the control and study groups. Superimposing virtual surgery and CBCT scans revealed minimal differences in the landmark points, with no variation between groups or timepoints. The use of bespoke Snowman plates for stabilizing the mandible following SSRO exhibited clinical stability and reliability similar to those with bespoke four-hole plates. Additionally, a novel method was introduced to evaluate skeletal stability by separately analyzing the condyle–fossa gap changes and assessing the mandibular position.
format Online
Article
Text
id pubmed-10452001
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104520012023-08-26 Clinical Stability of Bespoke Snowman Plates for Fixation following Sagittal Split Ramus Osteotomy of the Mandible Byun, Soo-Hwan Park, Sang-Yoon Yi, Sang-Min Park, In-Young On, Sung-Woon Jeong, Chun-Ki Kim, Jong-Cheol Yang, Byoung-Eun Bioengineering (Basel) Article Maxillofacial skeletal surgery often involves the use of patient-specific implants. However, errors in obtaining patient data and designing and manufacturing patient-specific plates and guides can occur even with accurate virtual surgery. To address these errors, bespoke Snowman plates were designed to allow movement of the mandible. This study aimed to compare the stability of bespoke four-hole miniplates with that of a bespoke Snowman plate for bilateral sagittal split ramus osteotomy (SSRO), and to present a method to investigate joint cavity changes, as well as superimpose virtual and actual surgical images of the mandible. This retrospective study included 22 patients who met the inclusion criteria and underwent orthognathic surgery at a university hospital between 2015 and 2018. Two groups were formed on the basis of the plates used: a control group with four-hole bespoke plates and a study group with bespoke Snowman plates. Stability was assessed by measuring the condyle–fossa space and superimposing three-dimensional virtual surgery images on postoperative cone-beam computed tomography (CBCT) scans. No significant differences were observed in the condyle–fossa space preoperatively and 1 year postoperatively between the control and study groups. Superimposing virtual surgery and CBCT scans revealed minimal differences in the landmark points, with no variation between groups or timepoints. The use of bespoke Snowman plates for stabilizing the mandible following SSRO exhibited clinical stability and reliability similar to those with bespoke four-hole plates. Additionally, a novel method was introduced to evaluate skeletal stability by separately analyzing the condyle–fossa gap changes and assessing the mandibular position. MDPI 2023-08-01 /pmc/articles/PMC10452001/ /pubmed/37627799 http://dx.doi.org/10.3390/bioengineering10080914 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Byun, Soo-Hwan
Park, Sang-Yoon
Yi, Sang-Min
Park, In-Young
On, Sung-Woon
Jeong, Chun-Ki
Kim, Jong-Cheol
Yang, Byoung-Eun
Clinical Stability of Bespoke Snowman Plates for Fixation following Sagittal Split Ramus Osteotomy of the Mandible
title Clinical Stability of Bespoke Snowman Plates for Fixation following Sagittal Split Ramus Osteotomy of the Mandible
title_full Clinical Stability of Bespoke Snowman Plates for Fixation following Sagittal Split Ramus Osteotomy of the Mandible
title_fullStr Clinical Stability of Bespoke Snowman Plates for Fixation following Sagittal Split Ramus Osteotomy of the Mandible
title_full_unstemmed Clinical Stability of Bespoke Snowman Plates for Fixation following Sagittal Split Ramus Osteotomy of the Mandible
title_short Clinical Stability of Bespoke Snowman Plates for Fixation following Sagittal Split Ramus Osteotomy of the Mandible
title_sort clinical stability of bespoke snowman plates for fixation following sagittal split ramus osteotomy of the mandible
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452001/
https://www.ncbi.nlm.nih.gov/pubmed/37627799
http://dx.doi.org/10.3390/bioengineering10080914
work_keys_str_mv AT byunsoohwan clinicalstabilityofbespokesnowmanplatesforfixationfollowingsagittalsplitramusosteotomyofthemandible
AT parksangyoon clinicalstabilityofbespokesnowmanplatesforfixationfollowingsagittalsplitramusosteotomyofthemandible
AT yisangmin clinicalstabilityofbespokesnowmanplatesforfixationfollowingsagittalsplitramusosteotomyofthemandible
AT parkinyoung clinicalstabilityofbespokesnowmanplatesforfixationfollowingsagittalsplitramusosteotomyofthemandible
AT onsungwoon clinicalstabilityofbespokesnowmanplatesforfixationfollowingsagittalsplitramusosteotomyofthemandible
AT jeongchunki clinicalstabilityofbespokesnowmanplatesforfixationfollowingsagittalsplitramusosteotomyofthemandible
AT kimjongcheol clinicalstabilityofbespokesnowmanplatesforfixationfollowingsagittalsplitramusosteotomyofthemandible
AT yangbyoungeun clinicalstabilityofbespokesnowmanplatesforfixationfollowingsagittalsplitramusosteotomyofthemandible