Cargando…
RGSB-UNet: Hybrid Deep Learning Framework for Tumour Segmentation in Digital Pathology Images
Colorectal cancer (CRC) is a prevalent gastrointestinal tumour with high incidence and mortality rates. Early screening for CRC can improve cure rates and reduce mortality. Recently, deep convolution neural network (CNN)-based pathological image diagnosis has been intensively studied to meet the cha...
Autores principales: | Zhao, Tengfei, Fu, Chong, Tie, Ming, Sham, Chiu-Wing, Ma, Hongfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452008/ https://www.ncbi.nlm.nih.gov/pubmed/37627842 http://dx.doi.org/10.3390/bioengineering10080957 |
Ejemplares similares
-
HUT: Hybrid UNet transformer for brain lesion and tumour segmentation
por: Soh, Wei Kwek, et al.
Publicado: (2023) -
GSN-HVNET: A Lightweight, Multi-Task Deep Learning Framework for Nuclei Segmentation and Classification
por: Zhao, Tengfei, et al.
Publicado: (2023) -
New hybrid segmentation algorithm: UNet-GOA
por: Yousefi, Tohid, et al.
Publicado: (2023) -
MWG-UNet: Hybrid Deep Learning Framework for Lung Fields and Heart Segmentation in Chest X-ray Images
por: Lyu, Yu, et al.
Publicado: (2023) -
A New Semantic Segmentation Framework Based on UNet
por: Fu, Leiyang, et al.
Publicado: (2023)