Cargando…

Fluoropolymer Functionalization of Organ-on-Chip Platform Increases Detection Sensitivity for Cannabinoids

Microfluidic technology is applied across various research areas including organ-on-chip (OOC) systems. The main material used for microfluidics is polydimethylsiloxane (PDMS), a silicone elastomer material that is biocompatible, transparent, and easy to use for OOC systems with well-defined microst...

Descripción completa

Detalles Bibliográficos
Autores principales: Tong, Ziqiu, Esser, Lars, Galettis, Peter, Rudd, David, Easton, Christopher D., Nilghaz, Azadeh, Peng, Bo, Zhu, Douer, Thissen, Helmut, Martin, Jennifer H., Voelcker, Nicolas H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452156/
https://www.ncbi.nlm.nih.gov/pubmed/37622865
http://dx.doi.org/10.3390/bios13080779
Descripción
Sumario:Microfluidic technology is applied across various research areas including organ-on-chip (OOC) systems. The main material used for microfluidics is polydimethylsiloxane (PDMS), a silicone elastomer material that is biocompatible, transparent, and easy to use for OOC systems with well-defined microstructures. However, PDMS-based OOC systems can absorb hydrophobic and small molecules, making it difficult and erroneous to make quantitative analytical assessments for such compounds. In this paper, we explore the use of a synthetic fluoropolymer, poly(4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-co-tetrafluoroethylene) (Teflon™ AF 2400), with excellent “non-stick” properties to functionalize OOC systems. Cannabinoids, including cannabidiol (CBD), are classes of hydrophobic compounds with a great potential for the treatment of anxiety, depression, pain, and cancer. By using CBD as a testing compound, we examined and systematically quantified CBD absorption into PDMS by means of an LC-MS/MS analysis. In comparison to the unmodified PDMS microchannels, an increase of approximately 30× in the CBD signal was detected with the fluoropolymer surface modification after 3 h of static incubation. Under perfusion conditions, we observed an increase of nearly 15× in the CBD signals from the surface-modified microchannels than from the unmodified microchannels. Furthermore, we also demonstrated that fluoropolymer-modified microchannels are compatible for culturing hCMEC/D3 endothelial cells and for CBD perfusion experiments.