Cargando…

Alzheimer’s Disease: Insights from Large-Scale Brain Dynamics Models

Alzheimer’s disease (AD) is a degenerative brain disease, and the condition is difficult to assess. In the past, numerous brain dynamics models have made remarkable contributions to neuroscience and the brain from the microcosmic to the macroscopic scale. Recently, large-scale brain dynamics models...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Lan, Lu, Jiayu, Li, Dandan, Xiang, Jie, Yan, Ting, Sun, Jie, Wang, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452161/
https://www.ncbi.nlm.nih.gov/pubmed/37626490
http://dx.doi.org/10.3390/brainsci13081133
Descripción
Sumario:Alzheimer’s disease (AD) is a degenerative brain disease, and the condition is difficult to assess. In the past, numerous brain dynamics models have made remarkable contributions to neuroscience and the brain from the microcosmic to the macroscopic scale. Recently, large-scale brain dynamics models have been developed based on dual-driven multimodal neuroimaging data and neurodynamics theory. These models bridge the gap between anatomical structure and functional dynamics and have played an important role in assisting the understanding of the brain mechanism. Large-scale brain dynamics have been widely used to explain how macroscale neuroimaging biomarkers emerge from potential neuronal population level disturbances associated with AD. In this review, we describe this emerging approach to studying AD that utilizes a biophysically large-scale brain dynamics model. In particular, we focus on the application of the model to AD and discuss important directions for the future development and analysis of AD models. This will facilitate the development of virtual brain models in the field of AD diagnosis and treatment and add new opportunities for advancing clinical neuroscience.