Cargando…
Design, Control, and Validation of a Symmetrical Hip and Straight-Legged Vertically-Compliant Bipedal Robot
This paper presents the development, modeling, and control of L03, an underactuated 3D bipedal robot with symmetrical hips and straight legs. This innovative design requires only five actuators, two for the legs and three for the hips. This paper is divided into three parts: (1) mechanism design and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452284/ https://www.ncbi.nlm.nih.gov/pubmed/37622945 http://dx.doi.org/10.3390/biomimetics8040340 |
Sumario: | This paper presents the development, modeling, and control of L03, an underactuated 3D bipedal robot with symmetrical hips and straight legs. This innovative design requires only five actuators, two for the legs and three for the hips. This paper is divided into three parts: (1) mechanism design and kinematic analysis; (2) trajectory planning for the center of mass and foot landing points based on the Divergent Component of Motion (DCM), enabling lateral and forward walking capabilities for the robot; and (3) gait stability analysis through prototype experiments. The primary focus of this study is to explore the application of underactuated symmetrical designs and determine the number of motors required to achieve omnidirectional movement of a bipedal robot. Our simulation and experimental results demonstrate that L03 achieves simple walking with a stable and consistent gait. Due to its lightweight construction, low leg inertia, and straight-legged design, L03 can achieve ground perception and gentle ground contact without the need for force sensors. Compared to existing bipedal robots, L03 closely adheres to the characteristics of the linear inverted pendulum model, making it an invaluable platform for future algorithm research. |
---|