Cargando…

In Vitro Evaluation of the Antimicrobial Properties of Nanoparticles as New Agents Used in Teat Sealants for Mastitis Prevention in Dry Cows

Mastitis prevention and treatment in dry cows are complex issues with limited solutions. The most common is intramammary antibiotic treatment. However, the effectiveness of this treatment varies among countries and even within herds in the same region. Therefore, it is necessary to develop new strat...

Descripción completa

Detalles Bibliográficos
Autores principales: Radzikowski, Daniel, Kalińska, Aleksandra, Kot, Magdalena, Jaworski, Sławomir, Wierzbicki, Mateusz, Gołębiewski, Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452312/
https://www.ncbi.nlm.nih.gov/pubmed/37626787
http://dx.doi.org/10.3390/biomedicines11082291
Descripción
Sumario:Mastitis prevention and treatment in dry cows are complex issues with limited solutions. The most common is intramammary antibiotic treatment. However, the effectiveness of this treatment varies among countries and even within herds in the same region. Therefore, it is necessary to develop new strategies for dry cow therapy. Metal nanoparticles (NPs), which have strong biocidal properties for treating diseases caused by bacteria, fungi, and algae, are increasingly used to reduce antibiotic use. In this study, AuNPs, CuNPs, AgNPs, PtNPs, NP-FeCs, and their triple complexes were used at different concentrations to evaluate their practical use in treating cows during their dry period. The nanoparticles were in hydrocolloid form and were added separately to form a mixture with beeswax, a mixture with oil, or a mixture based on vegetable glycerin and propylene glycol. The NPs’ concentrations were 0.5, 1, 2, and 5 ppm. Gram-positive and Gram-negative bacteria, and fungi isolated from cows diagnosed with mastitis were used to determine pathogen viability. The results indicated that AuNPs, CuNPs, AgNPs, and their complexes show biocidal properties against mastitis pathogens. AgNPs at 5 ppm had the strongest biocidal properties and reduced Streptococcus agalactiae’s survival rate by 50%; however, the nanoparticle complexes showed poor synergism. The strongest biocidal properties of NPs in wax and in glycerin mixed with glycol were shown against Escherichia coli. Additionally, low nanoparticle concentrations showed no cytotoxicity for BME-UV1 bovine cells, suggesting that these mixtures might be used for further in vivo testing.