Cargando…

Zingerone-Induced Autophagy Suppresses IL-1β Production by Increasing the Intracellular Killing of Aggregatibacter actinomycetemcomitans in THP-1 Macrophages

Periodontitis is caused by the inflammation of tooth-supporting tissue by pathogens such as Aggregatibacter actinomycetemcomitans. Interleukin-1β (IL-1β), a pro-inflammatory cytokine, triggers a series of inflammatory reactions and promotes bone resorption. The aim of this study was to examine the m...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Yuri, Chung, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452316/
https://www.ncbi.nlm.nih.gov/pubmed/37626627
http://dx.doi.org/10.3390/biomedicines11082130
_version_ 1785095638411640832
author Song, Yuri
Chung, Jin
author_facet Song, Yuri
Chung, Jin
author_sort Song, Yuri
collection PubMed
description Periodontitis is caused by the inflammation of tooth-supporting tissue by pathogens such as Aggregatibacter actinomycetemcomitans. Interleukin-1β (IL-1β), a pro-inflammatory cytokine, triggers a series of inflammatory reactions and promotes bone resorption. The aim of this study was to examine the molecular mechanism and anti-inflammatory function of zingerone, a dietary phenolic found in Zingiber officinale, on periodontal inflammation induced by A. actinomycetemcomitans. Zingerone attenuated A. actinomycetemcomitans-induced nitric oxide (NO) production by inhibiting the expression of inducible nitric oxide synthase (iNOS) in THP-1 macrophages. Zingerone also inhibited the expression of tumor necrosis factor (TNF)-α, IL-1β, and their signal pathway molecules including the toll-like receptor (TLR)/mitogen-activated protein kinase (MAPKase). In particular, zingerone suppressed the expression of absent in melanoma 2 (AIM2) inflammasome components on IL-1β production. Moreover, zingerone enhanced autophagosome formation and the expressions of autophagy-associated molecules. Interestingly, zingerone reduced the intracellular survival of A. actinomycetemcomitans. This was blocked by an autophagy inhibitor, which reversed the decrease in IL-1β production by zingerone. Finally, zingerone alleviated alveolar bone absorption in an A. actnomycetemcomitans-induced periodontitis mice model. Our data suggested that zingerone has potential use as a treatment for periodontal inflammation induced by A. actinomycetemcomitans.
format Online
Article
Text
id pubmed-10452316
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104523162023-08-26 Zingerone-Induced Autophagy Suppresses IL-1β Production by Increasing the Intracellular Killing of Aggregatibacter actinomycetemcomitans in THP-1 Macrophages Song, Yuri Chung, Jin Biomedicines Article Periodontitis is caused by the inflammation of tooth-supporting tissue by pathogens such as Aggregatibacter actinomycetemcomitans. Interleukin-1β (IL-1β), a pro-inflammatory cytokine, triggers a series of inflammatory reactions and promotes bone resorption. The aim of this study was to examine the molecular mechanism and anti-inflammatory function of zingerone, a dietary phenolic found in Zingiber officinale, on periodontal inflammation induced by A. actinomycetemcomitans. Zingerone attenuated A. actinomycetemcomitans-induced nitric oxide (NO) production by inhibiting the expression of inducible nitric oxide synthase (iNOS) in THP-1 macrophages. Zingerone also inhibited the expression of tumor necrosis factor (TNF)-α, IL-1β, and their signal pathway molecules including the toll-like receptor (TLR)/mitogen-activated protein kinase (MAPKase). In particular, zingerone suppressed the expression of absent in melanoma 2 (AIM2) inflammasome components on IL-1β production. Moreover, zingerone enhanced autophagosome formation and the expressions of autophagy-associated molecules. Interestingly, zingerone reduced the intracellular survival of A. actinomycetemcomitans. This was blocked by an autophagy inhibitor, which reversed the decrease in IL-1β production by zingerone. Finally, zingerone alleviated alveolar bone absorption in an A. actnomycetemcomitans-induced periodontitis mice model. Our data suggested that zingerone has potential use as a treatment for periodontal inflammation induced by A. actinomycetemcomitans. MDPI 2023-07-28 /pmc/articles/PMC10452316/ /pubmed/37626627 http://dx.doi.org/10.3390/biomedicines11082130 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Song, Yuri
Chung, Jin
Zingerone-Induced Autophagy Suppresses IL-1β Production by Increasing the Intracellular Killing of Aggregatibacter actinomycetemcomitans in THP-1 Macrophages
title Zingerone-Induced Autophagy Suppresses IL-1β Production by Increasing the Intracellular Killing of Aggregatibacter actinomycetemcomitans in THP-1 Macrophages
title_full Zingerone-Induced Autophagy Suppresses IL-1β Production by Increasing the Intracellular Killing of Aggregatibacter actinomycetemcomitans in THP-1 Macrophages
title_fullStr Zingerone-Induced Autophagy Suppresses IL-1β Production by Increasing the Intracellular Killing of Aggregatibacter actinomycetemcomitans in THP-1 Macrophages
title_full_unstemmed Zingerone-Induced Autophagy Suppresses IL-1β Production by Increasing the Intracellular Killing of Aggregatibacter actinomycetemcomitans in THP-1 Macrophages
title_short Zingerone-Induced Autophagy Suppresses IL-1β Production by Increasing the Intracellular Killing of Aggregatibacter actinomycetemcomitans in THP-1 Macrophages
title_sort zingerone-induced autophagy suppresses il-1β production by increasing the intracellular killing of aggregatibacter actinomycetemcomitans in thp-1 macrophages
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452316/
https://www.ncbi.nlm.nih.gov/pubmed/37626627
http://dx.doi.org/10.3390/biomedicines11082130
work_keys_str_mv AT songyuri zingeroneinducedautophagysuppressesil1bproductionbyincreasingtheintracellularkillingofaggregatibacteractinomycetemcomitansinthp1macrophages
AT chungjin zingeroneinducedautophagysuppressesil1bproductionbyincreasingtheintracellularkillingofaggregatibacteractinomycetemcomitansinthp1macrophages