Cargando…
Unlocking the Potential of Kinase Targets in Cancer: Insights from CancerOmicsNet, an AI-Driven Approach to Drug Response Prediction in Cancer
SIMPLE SUMMARY: Protein kinases, which are molecules involved in cell growth and signaling, can go haywire in cancer cells, causing them to multiply uncontrollably. Using drugs to target these kinases shows promise for cancer treatment, but we still have a lot to learn about effectively targeting th...
Autores principales: | Singha, Manali, Pu, Limeng, Srivastava, Gopal, Ni, Xialong, Stanfield, Brent A., Uche, Ifeanyi K., Rider, Paul J. F., Kousoulas, Konstantin G., Ramanujam, J., Brylinski, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452340/ https://www.ncbi.nlm.nih.gov/pubmed/37627077 http://dx.doi.org/10.3390/cancers15164050 |
Ejemplares similares
-
CancerOmicsNet: a multi-omics network-based approach to anti-cancer drug profiling
por: Pu, Limeng, et al.
Publicado: (2022) -
Artificial intelligence to guide precision anticancer therapy with multitargeted kinase inhibitors
por: Singha, Manali, et al.
Publicado: (2022) -
Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design
por: Shi, Wentao, et al.
Publicado: (2022) -
GraphSite: Ligand Binding Site Classification with Deep Graph Learning
por: Shi, Wentao, et al.
Publicado: (2022) -
Utility of a Recombinant HSV-1 Vaccine Vector for Personalized Cancer Vaccines
por: Uche, Ifeanyi Kingsley, et al.
Publicado: (2022)