Cargando…
Transhumeral Arm Reaching Motion Prediction through Deep Reinforcement Learning-Based Synthetic Motion Cloning
The lack of intuitive controllability remains a primary challenge in enabling transhumeral amputees to control a prosthesis for arm reaching with residual limb kinematics. Recent advancements in prosthetic arm control have focused on leveraging the predictive capabilities of artificial neural networ...
Autores principales: | Ahmed, Muhammad Hannan, Kutsuzawa, Kyo, Hayashibe, Mitsuhiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452356/ https://www.ncbi.nlm.nih.gov/pubmed/37622971 http://dx.doi.org/10.3390/biomimetics8040367 |
Ejemplares similares
-
Multimodal bipedal locomotion generation with passive dynamics via deep reinforcement learning
por: Koseki, Shunsuke, et al.
Publicado: (2023) -
Motor synergy generalization framework for new targets in multi-planar and multi-directional reaching task
por: Kutsuzawa, Kyo, et al.
Publicado: (2022) -
Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion
por: Ahmed, Muhammad Hannan, et al.
Publicado: (2023) -
fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees
por: Sattar, Neelum Yousaf, et al.
Publicado: (2022) -
Joint elasticity produces energy efficiency in underwater locomotion: Verification with deep reinforcement learning
por: Zheng, Chu, et al.
Publicado: (2022)