Cargando…
A Multidimensional Connectomics- and Radiomics-Based Advanced Machine-Learning Framework to Distinguish Radiation Necrosis from True Progression in Brain Metastases
SIMPLE SUMMARY: Diagnosing true progression (TP) versus radiation necrosis (RN) in brain metastases treated with stereotactic radiosurgery is a significant clinical challenge that can lead to delays of care or unnecessary neurosurgical procedures. We implemented a novel machine-learning framework th...
Autores principales: | Cao, Yilin, Parekh, Vishwa S., Lee, Emerson, Chen, Xuguang, Redmond, Kristin J., Pillai, Jay J., Peng, Luke, Jacobs, Michael A., Kleinberg, Lawrence R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452423/ https://www.ncbi.nlm.nih.gov/pubmed/37627141 http://dx.doi.org/10.3390/cancers15164113 |
Ejemplares similares
-
59. A RADIOMICS-BASED MACHINE LEARNING MODEL FOR DISTINGUISHING RADIATION NECROSIS FROM PROGRESSION OF BRAIN METASTASES TREATED WITH STEREOTACTIC RADIOSURGERY (SRS)
por: Chen, Xuguang, et al.
Publicado: (2020) -
Multiparametric radiomic tissue signature and machine learning for distinguishing radiation necrosis from tumor progression after stereotactic radiosurgery
por: Chen, Xuguang, et al.
Publicado: (2021) -
Tumor Connectomics: Mapping the Intra-Tumoral Complex Interaction Network Using Machine Learning
por: Parekh, Vishwa S., et al.
Publicado: (2022) -
Deep learning and radiomics in precision medicine
por: Parekh, Vishwa S., et al.
Publicado: (2019) -
Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging
por: Parekh, Vishwa S., et al.
Publicado: (2020)