Cargando…
Radiomics-Clinical AI Model with Probability Weighted Strategy for Prognosis Prediction in Non-Small Cell Lung Cancer
In this study, we propose a radiomics clinical probability-weighted model for the prediction of prognosis for non-small cell lung cancer (NSCLC). The model combines radiomics features extracted from radiotherapy (RT) planning images with clinical factors such as age, gender, histology, and tumor sta...
Autores principales: | Tang, Fuk-Hay, Fong, Yee-Wai, Yung, Shing-Hei, Wong, Chi-Kan, Tu, Chak-Lap, Chan, Ming-To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452490/ https://www.ncbi.nlm.nih.gov/pubmed/37626590 http://dx.doi.org/10.3390/biomedicines11082093 |
Ejemplares similares
-
Radiomics from Various Tumour Volume Sizes for Prognosis Prediction of Head and Neck Squamous Cell Carcinoma: A Voted Ensemble Machine Learning Approach
por: Tang, Fuk-Hay, et al.
Publicado: (2022) -
Augmented Features Synergize Radiomics in Post-Operative Survival Prediction and Adjuvant Therapy Recommendation for Non-Small Cell Lung Cancer
por: Chan, Lawrence Wing-Chi, et al.
Publicado: (2022) -
Radiomics-Based Artificial Intelligence Differentiation of Neurodegenerative Diseases with Reference to the Volumetry
por: Cheung, Eva Y. W., et al.
Publicado: (2022) -
Application and prospects of AI-based radiomics in ultrasound diagnosis
por: Zhang, Haoyan, et al.
Publicado: (2023) -
Radiomics AI prediction for head and neck squamous cell carcinoma (HNSCC) prognosis and recurrence with target volume approach
por: FH, Tang, et al.
Publicado: (2021)