Cargando…
Synthesis and Characterization of Polyhydroxyalkanoate/Graphene Oxide/Nanoclay Bionanocomposites: Experimental Results and Theoretical Predictions via Machine Learning Models
Predicting the mechanical properties of multiscale nanocomposites requires simulations that are costly from a practical viewpoint and time consuming. The use of algorithms for property prediction can reduce the extensive experimental work, saving time and costs. To assess this, ternary poly(hydroxyb...
Autores principales: | Champa-Bujaico, Elizabeth, Díez-Pascual, Ana M., García-Díaz, Pilar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452513/ https://www.ncbi.nlm.nih.gov/pubmed/37627257 http://dx.doi.org/10.3390/biom13081192 |
Ejemplares similares
-
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Bionanocomposites with Crystalline Nanocellulose and Graphene Oxide: Experimental Results and Support Vector Machine Modeling
por: Champa-Bujaico, Elizabeth, et al.
Publicado: (2023) -
Machine Learning for Property Prediction and Optimization of Polymeric Nanocomposites: A State-of-the-Art
por: Champa-Bujaico, Elizabeth, et al.
Publicado: (2022) -
Nanoclay reinforced polymer composites: nanocomposites and bionanocomposites
por: Jawaid , Mohammad, et al.
Publicado: (2016) -
Graphene Oxide Bionanocomposite Coatings with High Oxygen Barrier Properties
por: Uysal Unalan, Ilke, et al.
Publicado: (2016) -
Conductive In Situ Reduced Graphene
Oxide–Silk Fibroin Bionanocomposites
por: Nilogal, Parushuram, et al.
Publicado: (2021)