Cargando…
Temporal Feature Extraction and Machine Learning for Classification of Sleep Stages Using Telemetry Polysomnography
Accurate sleep stage detection is crucial for diagnosing sleep disorders and tailoring treatment plans. Polysomnography (PSG) is considered the gold standard for sleep assessment since it captures a diverse set of physiological signals. While various studies have employed complex neural networks for...
Autores principales: | Lal, Utkarsh, Mathavu Vasanthsena, Suhas, Hoblidar, Anitha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452545/ https://www.ncbi.nlm.nih.gov/pubmed/37626557 http://dx.doi.org/10.3390/brainsci13081201 |
Ejemplares similares
-
To sleep, or not to sleep – that is the question, for polysomnography
por: Corlateanu, Alexandru, et al.
Publicado: (2017) -
The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging
por: Arnal, Pierrick J, et al.
Publicado: (2020) -
Validation Framework for Sleep Stage Scoring in Wearable Sleep Trackers and Monitors with Polysomnography Ground Truth
por: Nguyen, Quyen N. T., et al.
Publicado: (2021) -
An automated heart rate-based algorithm for sleep stage classification: Validation using conventional polysomnography and an innovative wearable electrocardiogram device
por: Pini, Nicolò, et al.
Publicado: (2022) -
P076 Sleep Staging Agreement Between Polysomnography and Sleep Profiler in Isolated REM Sleep Behavior Disorder
por: Levendowski, D, et al.
Publicado: (2021)