Cargando…

Smartphone-Based Rigid Endoscopy Device with Hemodynamic Response Imaging and Laser Speckle Contrast Imaging

Modern smartphones have been employed as key elements in point-of-care (POC) devices due to remarkable advances in their form factor, computing, and display performances. Recently, we reported a combination of the smartphone with a handheld endoscope using laser speckle contrast imaging (LSCI), sugg...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Youngkyu, Choi, Woo June, Oh, Jeongmin, Lee, Kwanhee, Kim, Jun Ki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452712/
https://www.ncbi.nlm.nih.gov/pubmed/37622902
http://dx.doi.org/10.3390/bios13080816
Descripción
Sumario:Modern smartphones have been employed as key elements in point-of-care (POC) devices due to remarkable advances in their form factor, computing, and display performances. Recently, we reported a combination of the smartphone with a handheld endoscope using laser speckle contrast imaging (LSCI), suggesting potential for functional POC endoscopy. Here, we extended our work to develop a smartphone-combined multifunctional handheld endoscope using dual-wavelength LSCI. Dual-wavelength LSCI is used to monitor the changes in dynamic blood flow as well as changes in the concentration of oxygenated (HbO(2)), deoxygenated (Hbr), and total hemoglobin (HbT). The smartphone in the device performs fast acquisition and computation of the raw LSCI data to map the blood perfusion parameters. The flow imaging performance of the proposed device was tested with a tissue-like flow phantom, exhibiting a speckle flow index map representing the blood perfusion. Furthermore, the device was employed to assess the blood perfusion status from an exteriorized intestine model of rat in vivo during and after local ischemia, showing that blood flow and HbO(2) gradually decreased in the ischemic region whereas hyperemia and excess increases in HbO(2) were observed in the same region right after reperfusion. The results indicate that the combination of LSCI with smartphone endoscopy delivers a valuable platform for better understanding of the functional hemodynamic changes in the vasculatures of the internal organs, which may benefit POC testing for diagnosis and treatment of vascular diseases.