Cargando…
Impact of H&E Stain Normalization on Deep Learning Models in Cancer Image Classification: Performance, Complexity, and Trade-Offs
SIMPLE SUMMARY: This research study investigates the impact of stain normalization on deep learning models for cancer image classification by evaluating model performance, complexity, and trade-offs. The primary objective is to assess the improvement in accuracy, performance, and resource optimizati...
Autores principales: | Madusanka, Nuwan, Jayalath, Pramudini, Fernando, Dileepa, Yasakethu, Lasith, Lee, Byeong-Il |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452714/ https://www.ncbi.nlm.nih.gov/pubmed/37627172 http://dx.doi.org/10.3390/cancers15164144 |
Ejemplares similares
-
Cluster Analysis of Cell Nuclei in H&E-Stained Histological Sections of Prostate Cancer and Classification Based on Traditional and Modern Artificial Intelligence Techniques
por: Bhattacharjee, Subrata, et al.
Publicado: (2021) -
Willingness to Pay and Time Trade-off in Thai Patients with Port-Wine Stains
por: Jantarakolica, Tatre, et al.
Publicado: (2022) -
Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off
por: León, Javier, et al.
Publicado: (2020) -
Deep learning-based transformation of H&E stained tissues into special stains
por: de Haan, Kevin, et al.
Publicado: (2021) -
Cancer heterogeneity is defined by normal cellular trade-offs
por: Weistuch, Corey, et al.
Publicado: (2023)