Cargando…

Weighted multiple model adaptive boundary control for a flexible manipulator

In this article, a weighted multiple model adaptive boundary control scheme is proposed for a flexible manipulator with unknown large parameter uncertainties. First, the uncertainties are approximatively covered by a finite number of constant models. Second, based on Euler–Bernoulli beam theory and...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Weicun, Li, Qing, Zhang, Yuzhen, Lu, Ziyi, Nian, Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452818/
https://www.ncbi.nlm.nih.gov/pubmed/31829801
http://dx.doi.org/10.1177/0036850419886468
Descripción
Sumario:In this article, a weighted multiple model adaptive boundary control scheme is proposed for a flexible manipulator with unknown large parameter uncertainties. First, the uncertainties are approximatively covered by a finite number of constant models. Second, based on Euler–Bernoulli beam theory and Hamilton principle, the distributed parameter model of the flexible manipulator is constructed in terms of partial differential equation for each local constant model. Correspondingly, local boundary controllers are designed to control the manipulator movement and suppress its vibration for each partial differential equation model, which are based on Lyapunov stability theory. Then, a novel weighted multiple model adaptive control strategy is developed based on an improved weighting algorithm. The stability of the overall closed-loop system is ensured by virtual equivalent system theory. Finally, numerical simulations are provided to illustrate the feasibility and effectiveness of the proposed control strategy.