Cargando…

Bio-Piezoelectric Ceramic Composites for Electroactive Implants—Biological Performance

Barium titanate (BaTiO(3)) piezoelectric ceramic may be a potential alternative for promoting osseointegration due to its piezoelectric properties similar to bone electric potentials generated in loading function. In this sense, the aim of this in vitro study was to evaluate the cellular response of...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernandes, Beatriz Ferreira, Silva, Neusa, Marques, Joana Faria, Da Cruz, Mariana Brito, Tiainen, Laura, Gasik, Michael, Carvalho, Óscar, Silva, Filipe Samuel, Caramês, João, Mata, António
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452837/
https://www.ncbi.nlm.nih.gov/pubmed/37622943
http://dx.doi.org/10.3390/biomimetics8040338
Descripción
Sumario:Barium titanate (BaTiO(3)) piezoelectric ceramic may be a potential alternative for promoting osseointegration due to its piezoelectric properties similar to bone electric potentials generated in loading function. In this sense, the aim of this in vitro study was to evaluate the cellular response of human osteoblasts and gingival fibroblasts as well as the impact on S. oralis when in contact with BaTiO(3) functionalized zirconia implant surfaces with piezoelectric properties. Zirconia discs with BaTiO(3) were produced and contact poling (piezo activation) was performed. Osteoblasts (hFOB 1.19), fibroblasts (HGF hTERT) and S. oralis were culture on discs. Cell viability and morphology, cell differentiation markers, bacterial adhesion and growth were evaluated. The present study suggests that zirconia composite surfaces with the addition of piezoelectric BaTiO(3) are not cytotoxic to peri-implant cells. Also, they seem to promote a faster initial osteoblast differentiation. Moreover, these surfaces may inhibit the growth of S. oralis by acting as a bacteriostatic agent over time. Although the piezoelectric properties do not affect the cellular inflammatory profile, they appear to enable the initial adhesion of bacteria, however this is not significant over the entire testing period. Furthermore, the addition of non-poled BaTiO(3) to zirconia may have a potential reduction effect on IL-6 mediated-inflammatory activity in fibroblasts.