Cargando…
IDSNN: Towards High-Performance and Low-Latency SNN Training via Initialization and Distillation
Spiking neural networks (SNNs) are widely recognized for their biomimetic and efficient computing features. They utilize spikes to encode and transmit information. Despite the many advantages of SNNs, they suffer from the problems of low accuracy and large inference latency, which are, respectively,...
Autores principales: | Fan, Xiongfei, Zhang, Hong, Zhang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452895/ https://www.ncbi.nlm.nih.gov/pubmed/37622980 http://dx.doi.org/10.3390/biomimetics8040375 |
Ejemplares similares
-
ACE-SNN: Algorithm-Hardware Co-design of Energy-Efficient & Low-Latency Deep Spiking Neural Networks for 3D Image Recognition
por: Datta, Gourav, et al.
Publicado: (2022) -
EvtSNN: Event-driven SNN simulator optimized by population and pre-filtering
por: Mo, Lingfei, et al.
Publicado: (2022) -
Towards liver segmentation in the wild via contrastive distillation
por: Fogarollo, Stefano, et al.
Publicado: (2023) -
A low cost neuromorphic learning engine based on a high performance supervised SNN learning algorithm
por: Siddique, Ali, et al.
Publicado: (2023) -
Direct training high-performance spiking neural networks for object recognition and detection
por: Zhang, Hong, et al.
Publicado: (2023)