Cargando…
Role of Mitochondria–ER Contact Sites in Mitophagy
Mitochondria are often referred to as the “powerhouse” of the cell. However, this organelle has many more functions than simply satisfying the cells’ metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these func...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452924/ https://www.ncbi.nlm.nih.gov/pubmed/37627263 http://dx.doi.org/10.3390/biom13081198 |
_version_ | 1785095792509321216 |
---|---|
author | Rühmkorf, Alina Harbauer, Angelika Bettina |
author_facet | Rühmkorf, Alina Harbauer, Angelika Bettina |
author_sort | Rühmkorf, Alina |
collection | PubMed |
description | Mitochondria are often referred to as the “powerhouse” of the cell. However, this organelle has many more functions than simply satisfying the cells’ metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these functions require contact with the ER, which is mediated by several tether proteins located on the respective organellar surfaces, enabling the formation of mitochondria–ER contact sites (MERCS). Upon damage, mitochondria produce reactive oxygen species (ROS) that can harm the surrounding cell. To circumvent toxicity and to maintain a functional pool of healthy organelles, damaged and excess mitochondria can be targeted for degradation via mitophagy, a form of selective autophagy. Defects in mitochondria–ER tethers and the accumulation of damaged mitochondria are found in several neurodegenerative diseases, including Parkinson’s disease and amyotrophic lateral sclerosis, which argues that the interplay between the two organelles is vital for neuronal health. This review provides an overview of the different mechanisms of mitochondrial quality control that are implicated with the different mitochondria–ER tether proteins, and also provides a novel perspective on how MERCS are involved in mediating mitophagy upon mitochondrial damage. |
format | Online Article Text |
id | pubmed-10452924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104529242023-08-26 Role of Mitochondria–ER Contact Sites in Mitophagy Rühmkorf, Alina Harbauer, Angelika Bettina Biomolecules Review Mitochondria are often referred to as the “powerhouse” of the cell. However, this organelle has many more functions than simply satisfying the cells’ metabolic needs. Mitochondria are involved in calcium homeostasis and lipid metabolism, and they also regulate apoptotic processes. Many of these functions require contact with the ER, which is mediated by several tether proteins located on the respective organellar surfaces, enabling the formation of mitochondria–ER contact sites (MERCS). Upon damage, mitochondria produce reactive oxygen species (ROS) that can harm the surrounding cell. To circumvent toxicity and to maintain a functional pool of healthy organelles, damaged and excess mitochondria can be targeted for degradation via mitophagy, a form of selective autophagy. Defects in mitochondria–ER tethers and the accumulation of damaged mitochondria are found in several neurodegenerative diseases, including Parkinson’s disease and amyotrophic lateral sclerosis, which argues that the interplay between the two organelles is vital for neuronal health. This review provides an overview of the different mechanisms of mitochondrial quality control that are implicated with the different mitochondria–ER tether proteins, and also provides a novel perspective on how MERCS are involved in mediating mitophagy upon mitochondrial damage. MDPI 2023-07-31 /pmc/articles/PMC10452924/ /pubmed/37627263 http://dx.doi.org/10.3390/biom13081198 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Rühmkorf, Alina Harbauer, Angelika Bettina Role of Mitochondria–ER Contact Sites in Mitophagy |
title | Role of Mitochondria–ER Contact Sites in Mitophagy |
title_full | Role of Mitochondria–ER Contact Sites in Mitophagy |
title_fullStr | Role of Mitochondria–ER Contact Sites in Mitophagy |
title_full_unstemmed | Role of Mitochondria–ER Contact Sites in Mitophagy |
title_short | Role of Mitochondria–ER Contact Sites in Mitophagy |
title_sort | role of mitochondria–er contact sites in mitophagy |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452924/ https://www.ncbi.nlm.nih.gov/pubmed/37627263 http://dx.doi.org/10.3390/biom13081198 |
work_keys_str_mv | AT ruhmkorfalina roleofmitochondriaercontactsitesinmitophagy AT harbauerangelikabettina roleofmitochondriaercontactsitesinmitophagy |