Cargando…

Container Profiler: Profiling resource utilization of containerized big data pipelines

BACKGROUND: This article presents the Container Profiler, a software tool that measures and records the resource usage of any containerized task. Our tool profiles the CPU, memory, disk, and network utilization of containerized tasks collecting over 60 Linux operating system metrics at the virtual m...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoang, Varik, Hung, Ling-Hong, Perez, David, Deng, Huazeng, Schooley, Raymond, Arumilli, Niharika, Yeung, Ka Yee, Lloyd, Wes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452954/
https://www.ncbi.nlm.nih.gov/pubmed/37624874
http://dx.doi.org/10.1093/gigascience/giad069
_version_ 1785095799586160640
author Hoang, Varik
Hung, Ling-Hong
Perez, David
Deng, Huazeng
Schooley, Raymond
Arumilli, Niharika
Yeung, Ka Yee
Lloyd, Wes
author_facet Hoang, Varik
Hung, Ling-Hong
Perez, David
Deng, Huazeng
Schooley, Raymond
Arumilli, Niharika
Yeung, Ka Yee
Lloyd, Wes
author_sort Hoang, Varik
collection PubMed
description BACKGROUND: This article presents the Container Profiler, a software tool that measures and records the resource usage of any containerized task. Our tool profiles the CPU, memory, disk, and network utilization of containerized tasks collecting over 60 Linux operating system metrics at the virtual machine, container, and process levels. The Container Profiler supports performing time-series profiling at a configurable sampling interval to enable continuous monitoring of the resources consumed by containerized tasks and pipelines. RESULTS: To investigate the utility of the Container Profiler, we profile the resource utilization requirements of a multistage bioinformatics analytical pipeline (RNA sequencing using unique molecular identifiers). We examine profiling metrics to assess patterns of CPU, disk, and network resource utilization across the different stages of the pipeline. We also quantify the profiling overhead of our Container Profiler tool to assess the impact of profiling a running pipeline with different levels of profiling granularity, verifying that impacts are negligible. CONCLUSIONS: The Container Profiler provides a useful tool that can be used to continuously monitor the resource consumption of long and complex containerized applications that run locally or on the cloud. This can help identify bottlenecks where more resources are needed to improve performance.
format Online
Article
Text
id pubmed-10452954
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-104529542023-08-26 Container Profiler: Profiling resource utilization of containerized big data pipelines Hoang, Varik Hung, Ling-Hong Perez, David Deng, Huazeng Schooley, Raymond Arumilli, Niharika Yeung, Ka Yee Lloyd, Wes Gigascience Tech Note BACKGROUND: This article presents the Container Profiler, a software tool that measures and records the resource usage of any containerized task. Our tool profiles the CPU, memory, disk, and network utilization of containerized tasks collecting over 60 Linux operating system metrics at the virtual machine, container, and process levels. The Container Profiler supports performing time-series profiling at a configurable sampling interval to enable continuous monitoring of the resources consumed by containerized tasks and pipelines. RESULTS: To investigate the utility of the Container Profiler, we profile the resource utilization requirements of a multistage bioinformatics analytical pipeline (RNA sequencing using unique molecular identifiers). We examine profiling metrics to assess patterns of CPU, disk, and network resource utilization across the different stages of the pipeline. We also quantify the profiling overhead of our Container Profiler tool to assess the impact of profiling a running pipeline with different levels of profiling granularity, verifying that impacts are negligible. CONCLUSIONS: The Container Profiler provides a useful tool that can be used to continuously monitor the resource consumption of long and complex containerized applications that run locally or on the cloud. This can help identify bottlenecks where more resources are needed to improve performance. Oxford University Press 2023-08-25 /pmc/articles/PMC10452954/ /pubmed/37624874 http://dx.doi.org/10.1093/gigascience/giad069 Text en © The Author(s) 2023. Published by Oxford University Press GigaScience. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Tech Note
Hoang, Varik
Hung, Ling-Hong
Perez, David
Deng, Huazeng
Schooley, Raymond
Arumilli, Niharika
Yeung, Ka Yee
Lloyd, Wes
Container Profiler: Profiling resource utilization of containerized big data pipelines
title Container Profiler: Profiling resource utilization of containerized big data pipelines
title_full Container Profiler: Profiling resource utilization of containerized big data pipelines
title_fullStr Container Profiler: Profiling resource utilization of containerized big data pipelines
title_full_unstemmed Container Profiler: Profiling resource utilization of containerized big data pipelines
title_short Container Profiler: Profiling resource utilization of containerized big data pipelines
title_sort container profiler: profiling resource utilization of containerized big data pipelines
topic Tech Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452954/
https://www.ncbi.nlm.nih.gov/pubmed/37624874
http://dx.doi.org/10.1093/gigascience/giad069
work_keys_str_mv AT hoangvarik containerprofilerprofilingresourceutilizationofcontainerizedbigdatapipelines
AT hunglinghong containerprofilerprofilingresourceutilizationofcontainerizedbigdatapipelines
AT perezdavid containerprofilerprofilingresourceutilizationofcontainerizedbigdatapipelines
AT denghuazeng containerprofilerprofilingresourceutilizationofcontainerizedbigdatapipelines
AT schooleyraymond containerprofilerprofilingresourceutilizationofcontainerizedbigdatapipelines
AT arumilliniharika containerprofilerprofilingresourceutilizationofcontainerizedbigdatapipelines
AT yeungkayee containerprofilerprofilingresourceutilizationofcontainerizedbigdatapipelines
AT lloydwes containerprofilerprofilingresourceutilizationofcontainerizedbigdatapipelines