Cargando…
Differential Expression of Subsets of Genes Related to HDL Metabolism and Atherogenesis in the Peripheral Blood in Coronary Artery Disease
Differential expression of genes (DEGs) in coronary artery disease (CAD) and the association between transcript level and high-density lipoprotein cholesterol (HDL-C) were studied with 76 male patients with CAD and 63 control patients. The transcript level of genes related to HDL metabolism (24 gene...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452992/ https://www.ncbi.nlm.nih.gov/pubmed/37623250 http://dx.doi.org/10.3390/cimb45080431 |
Sumario: | Differential expression of genes (DEGs) in coronary artery disease (CAD) and the association between transcript level and high-density lipoprotein cholesterol (HDL-C) were studied with 76 male patients with CAD and 63 control patients. The transcript level of genes related to HDL metabolism (24 genes) and atherosclerosis-prone (41 genes) in RNA isolated from peripheral blood mononuclear cells was measured by real-time RT-PCR. Twenty-eight DEGs were identified. The expression of cholesterol transporters, ALB, APOA1, and LCAT was down-regulated, while the expression of AMN, APOE, LDLR, LPL, PLTP, PRKACA, and CETP was up-regulated. The systemic inflammation in CAD is evidenced by the up-regulation of IL1B, TLR8, CXCL5, and TNFRSF1A. For the controls, TLR8 and SOAT1 were negative predictors of the HDL-C level. For CAD patients, PRKACG, PRKCQ, and SREBF1 were positive predictors, while PRKACB, LCAT, and S100A8 were negative predictors. For CAD patients, the efficiency of reverse cholesterol transport is 73–79%, and intracellular free cholesterol seems to accumulate at hyperalphalipoproteinemia. Both atheroprotective (via S100A8) and proatherogenic (via SREBF1, LCAT, PRKACG, PRKACB, and PRKCQ) associations of gene expression with HDL-C determine HDL functionality in CAD patients. The selected key genes and involved pathways may represent HDL-specific targets for the diagnosis and treatment of CAD and atherosclerosis. |
---|