Cargando…
A Multiscale Recursive Attention Gate Federation Method for Multiple Working Conditions Fault Diagnosis
Federated learning (FL) is an effective method when a single client cannot provide enough samples for multiple condition fault diagnosis of bearings since it can combine the information provided by multiple clients. However, some of the client’s working conditions are different; for example, differe...
Autores principales: | Zhang, Zhiqiang, Zhou, Funa, Wang, Chaoge, Wen, Chenglin, Hu, Xiong, Wang, Tianzhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453002/ https://www.ncbi.nlm.nih.gov/pubmed/37628195 http://dx.doi.org/10.3390/e25081165 |
Ejemplares similares
-
Dynamic Semi-Supervised Federated Learning Fault Diagnosis Method Based on an Attention Mechanism
por: Liu, Shun, et al.
Publicado: (2023) -
Federated Learning Based Fault Diagnosis Driven by Intra-Client Imbalance Degree
por: Zhou, Funa, et al.
Publicado: (2023) -
Trend Feature Consistency Guided Deep Learning Method for Minor Fault Diagnosis
por: Jia, Pengpeng, et al.
Publicado: (2023) -
Multilocation and Multiscale Learning Framework with Skip Connection for Fault Diagnosis of Bearing under Complex Working Conditions
por: Ban, Hongwei, et al.
Publicado: (2021) -
A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
por: Zhou, Funa, et al.
Publicado: (2018)