Cargando…
Acceleration of Approximate Matrix Multiplications on GPUs
Matrix multiplication is important in various information-processing applications, including the computation of eigenvalues and eigenvectors, and in combinatorial optimization algorithms. Therefore, reducing the computation time of matrix products is essential to speed up scientific and practical ca...
Autores principales: | Okuyama, Takuya, Röhm, André, Mihana, Takatomo, Naruse, Makoto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453036/ https://www.ncbi.nlm.nih.gov/pubmed/37628160 http://dx.doi.org/10.3390/e25081130 |
Ejemplares similares
-
Bandit Algorithm Driven by a Classical Random Walk and a Quantum Walk
por: Yamagami, Tomoki, et al.
Publicado: (2023) -
Pairing Optimization via Statistics: Algebraic Structure in Pairing Problems and Its Application to Performance Enhancement
por: Fujita, Naoki, et al.
Publicado: (2023) -
Decision making for large-scale multi-armed bandit problems using bias control of chaotic temporal waveforms in semiconductor lasers
por: Morijiri, Kensei, et al.
Publicado: (2022) -
Controlling chaotic itinerancy in laser dynamics for reinforcement learning
por: Iwami, Ryugo, et al.
Publicado: (2022) -
Scalable photonic reinforcement learning by time-division multiplexing of laser chaos
por: Naruse, Makoto, et al.
Publicado: (2018)