Cargando…

Joint Encryption Model Based on a Randomized Autoencoder Neural Network and Coupled Chaos Mapping

Following an in-depth analysis of one-dimensional chaos, a randomized selective autoencoder neural network (AENN), and coupled chaotic mapping are proposed to address the short period and low complexity of one-dimensional chaos. An improved method is proposed for synchronizing keys during the transm...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Anqi, Gong, Xiaoxue, Guo, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453204/
https://www.ncbi.nlm.nih.gov/pubmed/37628183
http://dx.doi.org/10.3390/e25081153
Descripción
Sumario:Following an in-depth analysis of one-dimensional chaos, a randomized selective autoencoder neural network (AENN), and coupled chaotic mapping are proposed to address the short period and low complexity of one-dimensional chaos. An improved method is proposed for synchronizing keys during the transmission of one-time pad encryption, which can greatly reduce the usage of channel resources. Then, a joint encryption model based on randomized AENN and a new chaotic coupling mapping is proposed. The performance analysis concludes that the encryption model possesses a huge key space and high sensitivity, and achieves the effect of one-time pad encryption. Experimental results show that this model is a high-security joint encryption model that saves secure channel resources and has the ability to resist common attacks, such as exhaustive attacks, selective plaintext attacks, and statistical attacks.