Cargando…
Joint Encryption Model Based on a Randomized Autoencoder Neural Network and Coupled Chaos Mapping
Following an in-depth analysis of one-dimensional chaos, a randomized selective autoencoder neural network (AENN), and coupled chaotic mapping are proposed to address the short period and low complexity of one-dimensional chaos. An improved method is proposed for synchronizing keys during the transm...
Autores principales: | Hu, Anqi, Gong, Xiaoxue, Guo, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453204/ https://www.ncbi.nlm.nih.gov/pubmed/37628183 http://dx.doi.org/10.3390/e25081153 |
Ejemplares similares
-
A new image encryption scheme based on coupling map lattices with mixed multi-chaos
por: Wang, Xingyuan, et al.
Publicado: (2020) -
Three Techniques for Enhancing Chaos-Based Joint Compression and Encryption Schemes
por: Tsai, Chao-Jen, et al.
Publicado: (2019) -
A Novel Chaotic Map and an Improved Chaos-Based Image Encryption Scheme
por: Zhang, Xianhan, et al.
Publicado: (2014) -
Chaos-Based Simultaneous Compression and Encryption for Hadoop
por: Usama, Muhammad, et al.
Publicado: (2017) -
Encryption key distribution via chaos synchronization
por: Keuninckx, Lars, et al.
Publicado: (2017)