Cargando…
Bridged-U-Net-ASPP-EVO and Deep Learning Optimization for Brain Tumor Segmentation
Brain tumor segmentation from Magnetic Resonance Images (MRI) is considered a big challenge due to the complexity of brain tumor tissues, and segmenting these tissues from the healthy tissues is an even more tedious challenge when manual segmentation is undertaken by radiologists. In this paper, we...
Autores principales: | Yousef, Rammah, Khan, Shakir, Gupta, Gaurav, Albahlal, Bader M., Alajlan, Saad Abdullah, Ali, Aleem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453237/ https://www.ncbi.nlm.nih.gov/pubmed/37627893 http://dx.doi.org/10.3390/diagnostics13162633 |
Ejemplares similares
-
U-Net-Based Models towards Optimal MR Brain Image Segmentation
por: Yousef, Rammah, et al.
Publicado: (2023) -
Manufacturing industry based on dynamic soft sensors in integrated with feature representation and classification using fuzzy logic and deep learning architecture
por: Khan, Shakir, et al.
Publicado: (2023) -
DDPM: A Dengue Disease Prediction and Diagnosis Model Using Sentiment Analysis and Machine Learning Algorithms
por: Gupta, Gaurav, et al.
Publicado: (2023) -
A holistic overview of deep learning approach in medical imaging
por: Yousef, Rammah, et al.
Publicado: (2022) -
Applications of evolutionary computing: EvoWorkshops 2007:EvoCOMNET, EvoFIN, EvoIASP, EvoINTERACTION, EvoMUSART, EvoSTOC, and EvoTransLog, Valencia, Spain, April 11-13, 2007, proceedings
por: Giacobini, Mario, et al.
Publicado: (2007)