Cargando…
Quantum Knowledge in Phase Space
Quantum physics through the lens of Bayesian statistics considers probability to be a degree of belief and subjective. A Bayesian derivation of the probability density function in phase space is presented. Then, a Kullback–Liebler divergence in phase space is introduced to define interference and en...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453271/ https://www.ncbi.nlm.nih.gov/pubmed/37628257 http://dx.doi.org/10.3390/e25081227 |
Sumario: | Quantum physics through the lens of Bayesian statistics considers probability to be a degree of belief and subjective. A Bayesian derivation of the probability density function in phase space is presented. Then, a Kullback–Liebler divergence in phase space is introduced to define interference and entanglement. Comparisons between each of these two quantities and the entropy are made. A brief presentation of entanglement in phase space to the spin degree of freedom and an extension to mixed states completes the work. |
---|