Cargando…

Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators

In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach e...

Descripción completa

Detalles Bibliográficos
Autores principales: Rendón-Castro, Ángel Arturo, Mújica-Vargas, Dante, Luna-Álvarez, Antonio, Vianney Kinani, Jean Marie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453315/
https://www.ncbi.nlm.nih.gov/pubmed/37628207
http://dx.doi.org/10.3390/e25081176
_version_ 1785095905085489152
author Rendón-Castro, Ángel Arturo
Mújica-Vargas, Dante
Luna-Álvarez, Antonio
Vianney Kinani, Jean Marie
author_facet Rendón-Castro, Ángel Arturo
Mújica-Vargas, Dante
Luna-Álvarez, Antonio
Vianney Kinani, Jean Marie
author_sort Rendón-Castro, Ángel Arturo
collection PubMed
description In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach effectively suppresses impulsive, additive, and multiplicative noise across varied densities. Our proposed filter operates on both grayscale and color images; it uses local information obtained from the Wiener filter and robust outlier rejection based on Insha and Hampel’s tripartite redescending influence functions. The effectiveness of the proposed method is verified through qualitative and quantitative results, using metrics such as PSNR, MAE, and SSIM.
format Online
Article
Text
id pubmed-10453315
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104533152023-08-26 Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators Rendón-Castro, Ángel Arturo Mújica-Vargas, Dante Luna-Álvarez, Antonio Vianney Kinani, Jean Marie Entropy (Basel) Article In the field of image processing, noise represents an unwanted component that can occur during signal acquisition, transmission, and storage. In this paper, we introduce an efficient method that incorporates redescending M-estimators within the framework of Wiener estimation. The proposed approach effectively suppresses impulsive, additive, and multiplicative noise across varied densities. Our proposed filter operates on both grayscale and color images; it uses local information obtained from the Wiener filter and robust outlier rejection based on Insha and Hampel’s tripartite redescending influence functions. The effectiveness of the proposed method is verified through qualitative and quantitative results, using metrics such as PSNR, MAE, and SSIM. MDPI 2023-08-07 /pmc/articles/PMC10453315/ /pubmed/37628207 http://dx.doi.org/10.3390/e25081176 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Rendón-Castro, Ángel Arturo
Mújica-Vargas, Dante
Luna-Álvarez, Antonio
Vianney Kinani, Jean Marie
Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title_full Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title_fullStr Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title_full_unstemmed Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title_short Enhancing Image Quality via Robust Noise Filtering Using Redescending M-Estimators
title_sort enhancing image quality via robust noise filtering using redescending m-estimators
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453315/
https://www.ncbi.nlm.nih.gov/pubmed/37628207
http://dx.doi.org/10.3390/e25081176
work_keys_str_mv AT rendoncastroangelarturo enhancingimagequalityviarobustnoisefilteringusingredescendingmestimators
AT mujicavargasdante enhancingimagequalityviarobustnoisefilteringusingredescendingmestimators
AT lunaalvarezantonio enhancingimagequalityviarobustnoisefilteringusingredescendingmestimators
AT vianneykinanijeanmarie enhancingimagequalityviarobustnoisefilteringusingredescendingmestimators